756 research outputs found
Evaluated Experimental Isobaric Analogue States from to and associated IMME coefficients
Isobaric multiplets can be used to provide reliable mass predictions through
the Isobaric Multiplet Mass Equation (IMME). Isobaric analogue states (IAS) for
isospin multiplets from to have been studied within the 2012
Atomic Mass Evaluation (Ame2012). Each IAS established from published
experimental reaction data has been expressed in the form of a primary reaction
-value, and if necessary, has been recalibrated. The evaluated IAS masses
are provided here along with the associated IMME coefficients. Quadratic and
higher order forms of the IMME have been considered, and global trends have
been extracted. Particular nuclides, requiring experimental investigation, have
been identified and discussed. This dataset is the most precise and extensive
set of evaluated IAS to date.Comment: 44 pages, 7 figures, 11 tables. Accepted for publication in Nuclear
Physics
Adaptive reflection and focusing of Bose-Einstein condensates
We report adjustable magnetic `bouncing' and focusing of a dilute Rb
Bose gas. Both the condensate production and manipulation are realised using a
particularly straight-forward apparatus. The bouncing region is comprised of
approximately concentric ellipsoidal magnetic equipotentials with a centre that
can be adjusted vertically. We extend, and discuss the limitations of, simple
Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at
present find close agreement with the condensate's evolution. Very strong
focusing has been inferred and the observation of atomic matter-wave
diffraction should be possible. Prospects look bright for applications in
matter-wave atom-optics, due to the very smooth nature of the mirror
The TULIP project : first on-line result and near future
The TULIP project aims to produce radioactive ion beams of short-lived
neutron-deficient isotopes by using fusion-evaporation reactions in an
optimized Target Ion Source System (TISS). The first step consisted of the
design of a TISS to produce rubidium isotopes. It was tested with a primary
beam of [email protected] MeV/A irradiating a natural Ni target at the
SPIRAL1/GANIL facility in March 2022. Rates of Rb were measured as
well as an exceptionally short atom-to-ion transformation time for an ISOL
system, of the order of 200 \mathrm{\micro}s. The second step of the project
aims at producing neutron-deficient short-lived metallic isotopes in the region
of Sn. A "cold" prototype has been realized to study the electron
impact ionization in the TISS cavity and a "hot" version is under construction
to prepare an on-line experiment expected in the near future
The impact of myosteatosis on outcomes following surgery for gastrointestinal malignancy: a meta-analysis.
INTRODUCTION: The aim of this review was to evaluate the impact of preoperative myosteatosis on long-term outcomes following surgery for gastrointestinal malignancy. METHODS: We conducted a systematic search of the electronic information sources, including PubMed MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL and AMED. Studies were included if they reported the impact of preoperatively defined myosteatosis, or a similar term, on long-term survival outcomes following surgery for gastrointestinal malignancy. A subgroup analysis was performed for those studies reporting outcomes for colorectal cancer patients only. FINDINGS: Thirty-nine full-text articles were reviewed for inclusion, with 19 being retained after the inclusion criteria were applied. The total number of included patients across all studies was 14,481. Patients with myosteatosis had significantly poorer overall survival, according to univariate (hazard ratio (HR) 1.82, 95% confidence interval (CI) 1.67-1.99) and multivariable (HR 1.66, 95% CI 1.49-1.86) analysis. This was also demonstrated for cancer-specific survival (univariate HR 1.62, 95% CI 1.18-2.22; multivariable HR 1.73, 95% CI 1.48-2.03) and recurrence-free survival (univariate HR 1.28, 95% CI 1.10-1.48; multivariable HR 1.38, 95% CI 1.07-1.77). CONCLUSIONS: This meta-analysis demonstrates that patients with preoperative myosteatosis have poorer long-term survival outcomes following surgery for gastrointestinal malignancy. Therefore, myosteatosis should be used for preoperative optimisation and as a prognostic tool before surgery. More standardised definitions of myosteatosis and further cohort studies of patients with non-colorectal malignancies are required
Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates
There is a pressing need for robust and straightforward methods to create
potentials for trapping Bose-Einstein condensates which are simultaneously
dynamic, fully arbitrary, and sufficiently stable to not heat the ultracold
gas. We show here how to accomplish these goals, using a rapidly-moving laser
beam that "paints" a time-averaged optical dipole potential in which we create
BECs in a variety of geometries, including toroids, ring lattices, and square
lattices. Matter wave interference patterns confirm that the trapped gas is a
condensate. As a simple illustration of dynamics, we show that the technique
can transform a toroidal condensate into a ring lattice and back into a toroid.
The technique is general and should work with any sufficiently polarizable
low-energy particles.Comment: Minor text changes and three references added. This is the final
version published in New Journal of Physic
Deterministic single-atom excitation via adiabatic passage and Rydberg blockade
We propose to use adiabatic rapid passage with a chirped laser pulse in the
strong dipole blockade regime to deterministically excite only one Rydberg atom
from randomly loaded optical dipole traps or optical lattices. The chirped
laser excitation is shown to be insensitive to the random number \textit{N} of
the atoms in the traps. Our method overcomes the problem of the
dependence of the collective Rabi frequency, which was the main obstacle for
deterministic single-atom excitation in the ensembles with unknown \textit{N},
and can be applied for single-atom loading of dipole traps and optical
lattices.Comment: 6 pages, 5 figures. Version 5 is expanded and submitted to PRA. Typo
in Fig.4 corrected in Version 2. Version 3 and 4 are duplicates of V
c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Bayesian Object Localisation in Images
Abstract. A Bayesian approach to intensity-based object localisation is presented that employs a learned probabilistic model of image filter-bank output, applied via Monte Carlo methods, to escape the inefficiency of exhaustive search. An adequate probabilistic account of image data requires intensities both in the foreground (i.e. over the object), and in the background, to be modelled. Some previous approaches to object localisation by Monte Carlo methods have used models which, we claim, do not fully address the issue of the statistical independence of image intensities. It is addressed here by applying to each image a bank of filters whose outputs are approximately statistically independent. Distributions of the responses of individual filters, over foreground and background, are learned from training data. These distributions are then used to define a joint distribution for the output of the filter bank, conditioned on object configuration, and this serves as an observation likelihood for use in probabilistic inference about localisation. The effectiveness of probabilistic object localisation in image clutter, using Bayesian Localisation, is illustrated. Because it is a Monte Carlo method, it produces not simply a single estimate of object configuration, but an entire sample from the posterior distribution for the configuration. This makes sequential inference of configuration possible. Two examples are illustrated here: coarse to fine scale inference, and propagation of configuration estimates over time, in image sequences. Keywords: vision, object location, Monte Carlo, filter-bank, statistical independenc
Possible Indication of Narrow Baryonic Resonances Produced in the 1720-1790 MeV Mass Region
Signals of two narrow structures at M=1747 MeV and 1772 MeV were observed in
the invariant masses M_{pX} and M_{\pi^{+}X} of the pp->ppX and pp->p\pi^{+}X
reactions respectively. Many tests were made to see if these structures could
have been produced by experimental artefacts. Their small widths and the
stability of the extracted masses lead us to conclude that these structures are
genuine and may correspond to new exotic baryons. Several attempts to identify
them, including the possible "missing baryons" approach, are discussed.Comment: 17 pages including 8 figures and 3 tables. ReVte
Atomic masses of intermediate-mass neutron-deficient nuclei with relative uncertainty down to 35-ppb via multireflection time-of-flight mass spectrograph
High-precision mass measurements of Cu, Zn, Ga,
Ge, As, Br, Rb, and Sr were performed
utilizing a multireflection time-of-flight mass spectrograph combined with the
gas-filled recoil ion separator GARIS-II. In the case of Ga, a mass
uncertainty of 2.1 keV, corresponding to a relative precision of , was obtained and the mass value is in excellent agreement
with the 2016 Atomic Mass Evaluation. For Ge and Br, where masses
were previously deduced through indirect measurements, discrepancies with
literature values were found. The feasibility of using this device for mass
measurements of nuclides more neutron-deficient side, which have significant
impact on the -process pathway, is discussed.Comment: 15 pages, 6 figures, 1 tabl
\pi N and \eta p deexcitation channels of the N^* and \Delta baryonic resonances between 1470 and 1680 MeV
Two reactions, pp->ppX and pp->p\pi^+X, are used to study the 1.47<M<1.68 GeV
baryonic mass range. Three different final states are considered in the
invariant masses: N^* or \Delta^+, p\pi^0, and p\eta. The last two channels are
defined by software cuts applied to the missing mass of the first reaction.
Several narrow structures are extracted with widths \sigma(\Gamma) varying
between 3 and 9 MeV. Some structures are observed in one channel but not in
others. Such nonobservation may be due either to the spectrometer momenta
limits or to the physics (e.g. no such disintegration channel is allowed from
the narrow state considered).
We tentatively conclude that the broad Particle Data Group (PDG) baryonic
resonances N(1520)D13, N(1535)S11, Delta(1600)P33, and N(1675)D15 are
collective states built from several narrow and weakly excited resonances, each
having a (much) smaller width than the one reported by PDG.Comment: 29 pages, plus 50 (.png) figures Will be published in a slightly
reduced size in Phys. Rev.
- …