18 research outputs found

    Shuttle orbiter with telescoping main propulsion unit and payload

    Get PDF
    An improved Space Shuttle with variable internal volume is provided. The Space Shuttle Orbiter includes a telescoping main propulsion unit. This main propulsion unit contains the main rocket engines and fuel tanks and telescopes into the Space Shuttle. A variable cavity is located between this unit and the crew compartment. Accordingly, the positioning of the telescoping main propulsion unit determines the volume of the variable cavity. Thus, the volume of the variable length of the entire Space Shuttle may be increased or decreased to achieve desired configurations for optimal storage. In one embodiment of the invention, the payload also telescopes within the variable cavity

    Design, fabrication, and tests of a metallic shell tile thermal protection system for space transportation

    Get PDF
    A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories

    Two-stage earth-to-orbit transport with translating oblique wings for booster recovery

    Get PDF
    A two-stage earth-to-orbit transport includes an orbiter vehicle and a pair of boosters, each having a depolyable oblique wing located along a longitudinal axis of the booster. The wing is deployed in an oblique disposition in supersonic and hypersonic speeds, and disposed at 90.degree. for subsonic speeds encountered during entry. The oblique wing is driven axially and rotated by means of a turret mounted on rails

    Performance of a circular body earth-to-orbit winged transport with various strap-on boosters

    Get PDF
    Various types of twin strap-on boosters were evaluated by applying them to a core vehicle. The core vehicle has a clipped delta wing and a simple circular body, and is equipped with five Space Shuttle main engines. The only propellants in the core vehicle are liquid oxygen and liquid hydrogen. The strap-on boosters investigated include the current Shuttle solid rocket motors with steel cases and advanced solids with graphite composite filament-wound cases. Also, two types of liquid-oxygen/hydrocarbon boosters were investigated - one pair without crossfeed to the core vehicle and one with. The payloads obtained were tabulated for various assumptions, such as power levels on the core vehicle engines, number of engines, and maximum allowable flight dynamic pressures. The payload for the core vehicle with two filament-wound Shuttle solid rocket strap-on boosters was 83,000 lb and the payload for two liquid strap-ons with crossfeed was 84,000 lb. The core vehicle with Shuttle solid rocket strap-on boosters is regarded as a near term technology system

    Two-stage reusable launch system utilizing a winged core vehicle and glideback boosters

    Get PDF
    A near-term technology launch system is described in which Space Shuttle main engines are used on a manned orbiter and also on twin strap-on unmanned boosters. The orbiter has a circular body and clipped delta wings. The twin strap-on boosters have a circular body and deployable oblique wings for a glideback recovery. The dry and gross weights of the system, capable of delivering 70klb of cargo to orbit, are compared with a similar system with hydrocarbon-fueled boosters and with the current Shuttle

    Subsonic Aerodynamic Characteristics of a Circular Body Earth-to-Orbit Vehicle

    Get PDF
    A test of a generic reusable earth-to-orbit transport was conducted in the 7- by 10-Foot high-speed tunnel at the Langley Research Center at Mach number 0.3. The model had a body with a circular cross section and a thick clipped delta wing as the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center vertical fin, wingtip fins, and a nose-mounted vertical fin. The configuration was longitudinally stable about the estimated center-of-gravity position of 0.72 body length and had sufficient pitch-control authority for stable trim over a wide range of angle of attack, regardless of fin arrangement. The maximum trimmed lift/drag ratio for the aft center-fin configuration was less than 5, whereas the other configurations had values of above 6. The aft center-fin configuration was directionally stable for all angles of attack tested. The wingtip and nose fins were not intended to produce directional stability but to be active controllers for artificial stabilization. Small rolling-moment values resulted from yaw control of the nose fin. Large adverse rolling-moment increments resulted from tip-fin controller deflection above 13 deg angle of attack. Flow visualization indicated that the adverse rolling-moment increments were probably caused by the influence of the deflected tip-fin controller on wing flow separation

    Space spider crane

    Get PDF
    A space spider crane for the movement, placement, and or assembly of various components on or in the vicinity of a space structure is described. As permanent space structures are utilized by the space program, a means will be required to transport cargo and perform various repair tasks. A space spider crane comprising a small central body with attached manipulators and legs fulfills this requirement. The manipulators may be equipped with constant pressure gripping end effectors or tools to accomplish various repair tasks. The legs are also equipped with constant pressure gripping end effectors to grip the space structure. Control of the space spider crane may be achieved either by computer software or a remotely situated human operator, who maintains visual contact via television cameras mounted on the space spider crane. One possible walking program consists of a parallel motion walking program whereby the small central body alternatively leans forward and backward relative to end effectors
    corecore