1,082 research outputs found
Cosmology, cohomology, and compactification
Ashtekar and Samuel have shown that Bianchi cosmological models with compact
spatial sections must be of Bianchi class A. Motivated by general results on
the symmetry reduction of variational principles, we show how to extend the
Ashtekar-Samuel results to the setting of weakly locally homogeneous spaces as
defined, e.g., by Singer and Thurston. In particular, it is shown that any
m-dimensional homogeneous space G/K admitting a G-invariant volume form will
allow a compact discrete quotient only if the Lie algebra cohomology of G
relative to K is non-vanishing at degree m.Comment: 6 pages, LaTe
The Principle of Symmetric Criticality in General Relativity
We consider a version of Palais' Principle of Symmetric Criticality (PSC)
that is applicable to the Lie symmetry reduction of Lagrangian field theories.
PSC asserts that, given a group action, for any group-invariant Lagrangian the
equations obtained by restriction of Euler-Lagrange equations to
group-invariant fields are equivalent to the Euler-Lagrange equations of a
canonically defined, symmetry-reduced Lagrangian. We investigate the validity
of PSC for local gravitational theories built from a metric. It is shown that
there are two independent conditions which must be satisfied for PSC to be
valid. One of these conditions, obtained previously in the context of
transverse symmetry group actions, provides a generalization of the well-known
unimodularity condition that arises in spatially homogeneous cosmological
models. The other condition seems to be new. The conditions that determine the
validity of PSC are equivalent to pointwise conditions on the group action
alone. These results are illustrated with a variety of examples from general
relativity. It is straightforward to generalize all of our results to any
relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio
On limits of spacetimes -- a coordinate-free approach
A coordinate-free approach to limits of spacetimes is developed. The limits
of the Schwarzschild metric as the mass parameter tends to 0 or are
studied, extending previous results. Besides the known Petrov type D and 0
limits, three vacuum plane-wave solutions of Petrov type N are found to be
limits of the Schwarzschild spacetime.Comment: 19 p
Self-similar cosmologies in 5D: spatially flat anisotropic models
In the context of theories of Kaluza-Klein type, with a large extra
dimension, we study self-similar cosmological models in 5D that are
homogeneous, anisotropic and spatially flat. The "ladder" to go between the
physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We
show that the 5-dimensional field equations determine the form of
the similarity variable. There are three different possibilities: homothetic,
conformal and "wave-like" solutions in 5D. We derive the most general
homothetic and conformal solutions to the 5D field equations. They require the
extra dimension to be spacelike, and are given in terms of one arbitrary
function of the similarity variable and three parameters. The Riemann tensor in
5D is not zero, except in the isotropic limit, which corresponds to the case
where the parameters are equal to each other. The solutions can be used as 5D
embeddings for a great variety of 4D homogeneous cosmological models, with and
without matter, including the Kasner universe. Since the extra dimension is
spacelike, the 5D solutions are invariant under the exchange of spatial
coordinates. Therefore they also embed a family of spatially {\it
inhomogeneous} models in 4D. We show that these models can be interpreted as
vacuum solutions in braneworld theory. Our work (I) generalizes the 5D
embeddings used for the FLRW models; (II) shows that anisotropic cosmologies
are, in general, curved in 5D, in contrast with FLRW models which can always be
embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that
anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D,
even when the metric in 5D explicitly depends on the extra coordinate, which is
quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the
Introduction and Summary section
Segre Types of Symmetric Two-tensors in n-Dimensional Spacetimes
Three propositions about Jordan matrices are proved and applied to
algebraically classify the Ricci tensor in n-dimensional Kaluza-Klein-type
spacetimes. We show that the possible Segre types are [1,1...1], [21...1],
[31\ldots 1], [z\bar{z}1...1] and degeneracies thereof. A set of canonical
forms for the Segre types is obtained in terms of semi-null bases of vectors.Comment: 14 pages, LaTeX, replaced due to a LaTex erro
Equivalence of three-dimensional spacetimes
A solution to the equivalence problem in three-dimensional gravity is given
and a practically useful method to obtain a coordinate invariant description of
local geometry is presented. The method is a nontrivial adaptation of Karlhede
invariant classification of spacetimes of general relativity. The local
geometry is completely determined by the curvature tensor and a finite number
of its covariant derivatives in a frame where the components of the metric are
constants. The results are presented in the framework of real two-component
spinors in three-dimensional spacetimes, where the algebraic classifications of
the Ricci and Cotton-York spinors are given and their isotropy groups and
canonical forms are determined. As an application we discuss Goedel-type
spacetimes in three-dimensional General Relativity. The conditions for local
space and time homogeneity are derived and the equivalence of three-dimensional
Goedel-type spacetimes is studied and the results are compared with previous
works on four-dimensional Goedel-type spacetimes.Comment: 13 pages - content changes and corrected typo
Candida albicans colonization and dissemination from the murine gastrointestinal tract : the influence of morphology and Th17 immunity
This article is protected by copyright. All rights reserved. This work was supported by the Wellcome Trust (086558, 080088, 102705), a Wellcome Trust Strategic Award (097377) and a studentship from the University of Aberdeen. D.K. was supported by grant 5R01AI083344 from the National Institute of Allergy and Infectious Diseases and by a Voelcker Young Investigator Award from the Max and Minnie Tomerlin Voelcker Fund.Peer reviewedPublisher PD
Stationary axisymmetric exteriors for perturbations of isolated bodies in general relativity, to second order
Perturbed stationary axisymmetric isolated bodies, e.g. stars, represented by
a matter-filled interior and an asymptotically flat vacuum exterior joined at a
surface where the Darmois matching conditions are satisfied, are considered.
The initial state is assumed to be static. The perturbations of the matching
conditions are derived and used as boundary conditions for the perturbed Ernst
equations in the exterior region. The perturbations are calculated to second
order. The boundary conditions are overdetermined: necessary and sufficient
conditions for their compatibility are derived. The special case of
perturbations of spherical bodies is given in detail.Comment: RevTeX; 32 pp. Accepted by Phys. Rev. D. Added references and extra
comments in introductio
Integrability of anisotropic and homogeneous Universes in scalar-tensor theory of gravitation
In this paper, we develop a method based on the analysis of the Kovalewski
exponents to study the integrability of anisotropic and homogeneous Universes.
The formalism is developed in scalar-tensor gravity, the general relativistic
case appearing as a special case of this larger framework. Then, depending on
the rationality of the Kovalewski exponents, the different models, both in the
vacuum and in presence of a barotropic matter fluid, are classified, and their
integrability is discussed.Comment: 16 pages, no figure, accepted in CQ
Twisting Null Geodesic Congruences, Scri, H-Space and Spin-Angular Momentum
The purpose of this work is to return, with a new observation and rather
unconventional point of view, to the study of asymptotically flat solutions of
Einstein equations. The essential observation is that from a given
asymptotically flat space-time with a given Bondi shear, one can find (by
integrating a partial differential equation) a class of asymptotically
shear-free (but, in general, twistiing) null geodesic congruences. The class is
uniquely given up to the arbitrary choice of a complex analytic world-line in a
four-parameter complex space. Surprisingly this parameter space turns out to be
the H-space that is associated with the real physical space-time under
consideration. The main development in this work is the demonstration of how
this complex world-line can be made both unique and also given a physical
meaning. More specifically by forcing or requiring a certain term in the
asymptotic Weyl tensor to vanish, the world-line is uniquely determined and
becomes (by several arguments) identified as the `complex center-of-mass'.
Roughly, its imaginary part becomes identified with the intrinsic spin-angular
momentum while the real part yields the orbital angular momentum.Comment: 26 pages, authors were relisted alphabeticall
- âŠ