14 research outputs found

    Combining Progressive Nodal Release with the Virtual Crack Closure Technique to Model Fatigue Delamination Growth Without Re-Meshing

    Get PDF
    The present work summarizes an approach to model mixed-mode 3D fatigue crack growth using the Virtual Crack Closure Technique (VCCT) without requiring re-meshing. It is demonstrated that the proposed approach can be used to simulate crack shapes that do not conform to the underlying mesh. The proposed approach relies solely on Paris Law characterization data to model delamination growth. Growth is determined as a post-processing step at the end of each increment, and hence no convergence issues associated with the progressive nodal release are encountered. This approach can be readily applied using standard solid element formulations and is implemented via an interface user element in Abaqus/Standard

    Simulating the Clamped Tapered Beam Specimen Under Quasi-Static and Fatigue Loading Using Floating Node Method

    Get PDF
    As part of the NASA Advanced Composites Project (ACP), a sub-element has been designed to provide validation data for progressive damage analysis models. The clamped tapered beam is a cross-ply laminated composite specimen designed to validate the simulation of the onset of matrix cracks and their interaction with delaminations, including delamination migration. A tapered geometry was used to localize the first damage occurrence in the tapered region, without prescribing an initial crack. The boundary and loading conditions were chosen to favor delamination growth and subsequent migration after the first damage occurrence. The typical sequence of events consists of a matrix crack located at the tapered region, leading to delamination onset, followed by delamination growth and subsequent delamination migration to a different interface via a dominant matrix crack. The Clamped Tapered Beam (CTB) was tested in both quasi-static and fatigue regimes. The results obtained are used in this study to assess and validate a methodology based on the Floating Node Method (FNM) implemented as an Extended Interface Element. In this methodology, quasi-static and fatigue damage formation and development are modeled by combining FNM to represent crack networks, with Directional Cohesive Zone Elements (DCZE) and Virtual Crack Closure Technique (VCCT), respectively. Qualitatively, the methodology is capable of predicting the sequence of events and overall failure morphology. Quantitatively, the simulation results generally bound the experimental data, based on the range of the characterization data used. In this paper, the results from quasi static and fatigue simulations are compared and correlated with experimental data

    Dimensional stability of curved panels with cocured stiffeners and cobonded frames

    Get PDF
    Closed form and finite element analyses are presented for axial direction and transverse direction dimensional stability of skin/stringer panels. Several sensitivity studies are presented to illustrate the influence of various design parameters on the dimensional stability of these panels. Panel geometry, material properties (stiffness and coefficient of thermal expansion), restraint conditions and local details, such as resin fillets, all combine to influence dimensional stability, residual and assembly forces

    Simulating Matrix Crack and Delamination Interaction in a Clamped Tapered Beam

    Get PDF
    Blind predictions were conducted to validate a discrete crack methodology based on the Floating Node Method to simulate matrix-crack/delamination interaction. The main novel aspects of the approach are: (1) the implementation of the floating node method via an 'extended interface element' to represent delaminations, matrix-cracks and their interaction, (2) application of directional cohesive elements to infer overall delamination direction, and (3) use of delamination direction and stress state at the delamination front to determine migration onset. Overall, good agreement was obtained between simulations and experiments. However, the validation exercise revealed the strong dependence of the simulation of matrix-crack/delamination interaction on the strength data (in this case transverse interlaminar strength, YT) used within the cohesive zone approach applied in this work. This strength value, YT, is itself dependent on the test geometry from which the strength measurement is taken. Thus, choosing an appropriate strength value becomes an ad-hoc step. As a consequence, further work is needed to adequately characterize and assess the accuracy and adequacy of cohesive zone approaches to model small crack growth and crack onset. Additionally, often when simulating damage progression with cohesive zone elements, the strength is lowered while keeping the fracture toughness constant to enable the use of coarser meshes. Results from the present study suggest that this approach is not recommended for any problem involving crack initiation, small crack growth or multiple crack interaction

    Advanced Technology Composite Fuselage: Program Overview

    Get PDF
    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted

    Effects of curvature on composite material beams

    No full text

    Reliability of Damage Tolerance Composite Structure Using Fasteners as Disbond Arrest Mechanism

    No full text

    Delamination Modeling in Noodle Region of Composite T-Joints

    No full text
    Delamination onset and propagation of an initial radial disbond in the noodle region of a T-section has been studied in detail. Pull-out loading coupled with residual stresses due to curing has been accounted for in the analysis. A rigorous finite element analysis in conjunction with virtual crack closure technique has been adopted to model delamination onset and growth. Thickness variation due to increasing number of plies and tool geometry variation has been quantified. Residual stresses due to curing are found to be very detrimental to the load-carrying capability of the T-joint
    corecore