3 research outputs found

    Throughput, Spectral, and Energy Efficiency of 5G Massive MIMO Applications Using Different Linear Precoding Schemes

    Get PDF
    — A promising massive multiple input multiple output (M-MIMO) system is required to meet the growing need for highly traffic data, highly-resolution of streaming video, and intelligent communication on the fifth-generation wireless networks (5G). M-MIMO systems are essential for the optimization of the trade between energy efficiency (EE), throughput (R), and spectral _efficiency (SE) in wireless 5G networks. M-MIMO system architecture is proposed in this paper to enhance the trade-off between energy efficiency and uplink and downlink throughput at the optimum EE. Furthermore, using linear precoding techniques such as M MMSE, RZF, ZF, and MR, the EE-SE trade-off is optimized for uplink and downlink (M-MIMO) systems. The analysis of simulation results proved that throughput (R) is enhanced by increasing the number of antennas at optimum EE. After that, the proposed trading scheme is optimized and improved using M_MMSE compared to RZF, ZF. Finally, the results prove that M_MMSE gives the optimum trade-off between EE and R at the proved optimum ratio between the number of active antennas and the number of active users UE

    Optimization of Intrusion Detection Using Likely Point PSO and Enhanced LSTM-RNN Hybrid Technique in Communication Networks

    No full text
    The intrusion detection system (IDS) is considered an essential sector in maintaining communication network security and has been desirably adopted by all network administrators. Several existing methods have been proposed for early intrusion detection systems. However, they experience drawbacks that make them subsequently inefficient against new/distinct attacks. To overcome these drawbacks, this paper proposes the enhanced long-short term memory (ELSTM) technique with recurrent neural network (RNN) (ELSTM-RNN) to enhance security in IDS. Intrusion detection technology has been associated with various problems, such as gradient vanishing, generalization, and overfitting issues. The proposed system solves the gradient-clipping issue using the likely point particle swarm optimization (LPPSO) and enhanced LSTM classification. The proposed method was evaluated using the NSL-KDD dataset (KDD TEST PLUS and KDD TEST21) for validation and testing. Many efficient features were selected using an enhanced technique, namely, the particle swarm optimization. The selected features serve for effective classification using an enhanced LSTM framework, where it is used to efficiently classify and detect the attack data from the normal data. The proposed system has been applied to the UNSW-NB15, CICIDS2017, CSE-CIC-IDS2018, and BOT _DATASET datasets for further verification. Results show that the training time of the proposed system is much less than that of other methods for different classes. Finally, the performance of the proposed ELSTM-RNN framework is analyzed using various metrics, such as accuracy, precision, recall, and error rate. Our proposed method outperformed LPBoost and DNNs methods

    Design and implementation of a low-cost circuit for medium-speed flash analog to digital conversions

    Get PDF
    Despite the considerable advancements in analog-to-digital conversion (ADC) circuits, many papers neglect several crucial considerations: Firstly, it does not ensure that ADCs work well in the software or hardware. Secondly, it is not certain that ADCs have a wide range of amplitude responses for the input voltages to be convenient in many applications, especially in electronics, communications, computer vision, CubeSat circuits, and subsystems. Finally, many of these ADCs need to look at the suitability of the proposed circuit to the most extensive range of frequencies. In this paper, a design of a low-cost circuit is proposed for medium-speed flash ADCs. The proposed circuit is simulated based on a set of electronic components with specific values to achieve high stability operation for a wide range of frequencies and voltages, whether in software or hardware. This circuit is practically implemented and experimentally tested. The proposed design aims to achieve high efficiency in the sampling process over a range of amplitudes from 10 mV to 10 V. The proposed circuit operates at a bandwidth of frequencies from 0 Hz to greater than 10 kHz in the simulation and hardware implementation
    corecore