1,353 research outputs found

    On the irreversibility of entanglement distillation

    Get PDF
    We investigate the irreversibility of entanglement distillation for a symmetric d-1 parameter family of mixed bipartite quantum states acting on Hilbert spaces of arbitrary dimension d x d. We prove that in this family the entanglement cost is generically strictly larger than the distillable entanglement, such that the set of states for which the distillation process is asymptotically reversible is of measure zero. This remains true even if the distillation process is catalytically assisted by pure state entanglement and every operation is allowed, which preserves the positivity of the partial transpose. It is shown, that reversibility occurs only in cases where the state is quasi-pure in the sense that all its pure state entanglement can be revealed by a simple operation on a single copy. The reversible cases are shown to be completely characterized by minimal uncertainty vectors for entropic uncertainty relations.Comment: 5 pages, revtex

    Role of mitochondria in Parkinson disease

    Get PDF
    The cause of the selective degeneration of nigrostriatal neurons in Parkinson disease (PD) has remained largely unknown. Exceptions include rare missense mutations in the alpha-synuclein gene on chromosome 4, a potentially pathogenic mutation affecting the ubiquitin pathway, and mutations in the parkin gene on chromosome 6. However, unlike classical PD, the latter syndrome is not associated with the formation of typical Lewy bodies. In contrast, a biochemical defect of complex I of the mitochondrial respiratory chain has been described in a relatively large group of confirmed PD cases. Recent cybrid studies indicate that the complex I defect in PD has a genetic cause and that it may arise from mutations in the mitochondrial DNA, Sequence analysis of the mitochondrial genome supports the view that mitochondrial point mutations are involved in PD pathogenesis. However, although mitochondria function as regulators in several known forms of cell death, their exact involvement in PD has remained unresolved. This is of relevance because classical apoptosis does not appear to play a major role in the degeneration of the parkinsonian nigra

    On the Key-Uncertainty of Quantum Ciphers and the Computational Security of One-way Quantum Transmission

    Get PDF
    We consider the scenario where Alice wants to send a secret (classical) nn-bit message to Bob using a classical key, and where only one-way transmission from Alice to Bob is possible. In this case, quantum communication cannot help to obtain perfect secrecy with key length smaller then nn. We study the question of whether there might still be fundamental differences between the case where quantum as opposed to classical communication is used. In this direction, we show that there exist ciphers with perfect security producing quantum ciphertext where, even if an adversary knows the plaintext and applies an optimal measurement on the ciphertext, his Shannon uncertainty about the key used is almost maximal. This is in contrast to the classical case where the adversary always learns nn bits of information on the key in a known plaintext attack. We also show that there is a limit to how different the classical and quantum cases can be: the most probable key, given matching plain- and ciphertexts, has the same probability in both the quantum and the classical cases. We suggest an application of our results in the case where only a short secret key is available and the message is much longer.Comment: 19 pages, 2 figures. This is a revised version of an earlier version that appeared in the proc. of Eucrocrypt'04:LNCS3027, 200

    Mediated tunable coupling of flux qubits

    Full text link
    It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUID's susceptibility on external flux makes it possible to continuously tune the induced coupling from antiferromagnetic (AF) to ferromagnetic (FM). In particular, for suitable parameters, the induced FM coupling can be sufficiently large to overcome any possible direct AF inductive coupling between the qubits. The main features follow from a classical analysis of the multi-qubit potential. A fully quantum treatment yields similar results, but with a modified expression for the SQUID susceptibility. Since the latter is exact, it can also be used to evaluate the susceptibility--or, equivalently, energy-level curvature--of an isolated rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable) qubit. The result is compared to the standard two-level (pseudospin) treatment of the anticrossing, and the ensuing conclusions are verified numerically.Comment: REVTeX 4, 16 pp., 4 EPS figures. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: major expansion and rewriting, new title and co-author; to appear in New Journal of Physics special issue (R. Fazio, ed.

    Can Bandl’s ring be recurrent?

    Get PDF
    Background: Bandl’s ring is a pathologic contraction ring of the uterus that is associated with obstructed labor. Case: A 35-year-old with an uncomplicated past medical history was found to have a Bandl’s ring in her first pregnancy during a cesarean section for failure to progress. During her subsequent pregnancy, what appeared to be a Bandl’s ring was again found during repeat cesarean section after spontaneous labor
    • …
    corecore