465 research outputs found

    Linear scaling between momentum and spin scattering in graphene

    Get PDF
    Spin transport in graphene carries the potential of a long spin diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 um. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to 10^13 cm^-2) carrier density range of graphene. A linear scaling between the spin diffusion length and the diffusion coefficient is observed. We measure nearly identical spin- and charge diffusion coefficients indicating that electron-electron interactions are relatively weak and transport is limited by impurity potential scattering. When extrapolated to the maximum carrier mobilities of 2x10^5 cm^2/Vs, our results predict that a considerable increase in the spin diffusion length should be possible

    Development of a serological Luminex assay for Trichinella and Salmonella in swine

    Get PDF
    In order to develop veterinary serological multiplex assays, a singleplex bead-based array on the Luminex platform was developed, and with this experience was expanded by building a multiplex serological assay. First a serological Luminex assay was developed for Trichinella in swine

    A Pathwise Ergodic Theorem for Quantum Trajectories

    Get PDF
    If the time evolution of an open quantum system approaches equilibrium in the time mean, then on any single trajectory of any of its unravelings the time averaged state approaches the same equilibrium state with probability 1. In the case of multiple equilibrium states the quantum trajectory converges in the mean to a random choice from these states.Comment: 8 page

    Quantum Trajectory Approach to the Stochastic Thermodynamics of a Forced Harmonic Oscillator

    Full text link
    I formulate a quantum stochastic thermodynamics for the quantum trajectories of a continuously-monitored forced harmonic oscillator coupled to a thermal reservoir. Consistent trajectory-dependent definitions are introduced for work, heat, and entropy, through engineering the thermal reservoir from a sequence of two-level systems. Within this formalism the connection between irreversibility and entropy production is analyzed and confirmed by proving a detailed fluctuation theorem for quantum trajectories. Finally, possible experimental verifications are discussed.Comment: 16 pages, 3 figures, submitted to PRE; expanded introduction and conclusion, corrected typos, new figure

    Hamiltonian and Linear-Space Structure for Damped Oscillators: I. General Theory

    Full text link
    The phase space of NN damped linear oscillators is endowed with a bilinear map under which the evolution operator is symmetric. This analog of self-adjointness allows properties familiar from conservative systems to be recovered, e.g., eigenvectors are "orthogonal" under the bilinear map and obey sum rules, initial-value problems are readily solved and perturbation theory applies to the_complex_ eigenvalues. These concepts are conveniently represented in a biorthogonal basis.Comment: REVTeX4, 10pp., 1 PS figure. N.B.: `Alec' is my first name, `Maassen van den Brink' my family name. v2: extensive streamlinin

    Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling

    Full text link
    We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation (neglecting the background contribution) the evolution of a total system subspace is not an exact semigroup for the multi-channel decay, unless the projectors into eigesntates of the reduced evolution generator W(z)W(z) are orthogonal. In this case these projectors must be evaluated at different pole locations zαzβz_\alpha\neq z_\beta. Since the orthogonality relation does not generally hold at different values of zz, for example, when there is symmetry breaking, the semigroup evolution is a poor approximation for the multi-channel decay, even for a very weak coupling. Nevertheless, there exists a possibility not only to ensure the orthogonality of the W(z)W(z) projectors regardless the number of the poles, but also to simultaneously suppress the effect of the background contribution. This possibility arises when the theory is generalized to take into account interactions with an environment. In this case W(z)W(z), and hence its eigenvectors as well, are {\it independent} of zz, which corresponds to a structure of the coupling to the continuum spectrum associated with the Markovian limit.Comment: 9 pages, 3 figure

    Spin dependent quantum interference in non-local graphene spin valves

    Full text link
    Spin dependent electron transport measurements on graphene are of high importance to explore possible spintronic applications. Up to date all spin transport experiments on graphene were done in a semi-classical regime, disregarding quantum transport properties such as phase coherence and interference. Here we show that in a quantum coherent graphene nanostructure the non-local voltage is strongly modulated. Using non-local measurements, we separate the signal in spin dependent and spin independent contributions. We show that the spin dependent contribution is about two orders of magnitude larger than the spin independent one, when corrected for the finite polarization of the electrodes. The non-local spin signal is not only strongly modulated but also changes polarity as a function of the applied gate voltage. By locally tuning the carrier density in the constriction we show that the constriction plays a major role in this effect and indicates that it can act as a spin filter device. Our results show the potential of quantum coherent graphene nanostructures for the use in future spintronic devices

    Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators

    Full text link
    Correlation functions C(t)C(t) \sim in ohmically damped systems such as coupled harmonic oscillators or optical resonators can be expressed as a single sum over modes jj (which are not power-orthogonal), with each term multiplied by the Petermann factor (PF) CjC_j, leading to "excess noise" when Cj>1|C_j| > 1. It is shown that Cj>1|C_j| > 1 is common rather than exceptional, that Cj|C_j| can be large even for weak damping, and that the PF appears in other processes as well: for example, a time-independent perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The coalescence of JJ (>1>1) eigenvectors gives rise to a critical point, which exhibits "giant excess noise" (CjC_j \to \infty). At critical points, the divergent parts of JJ contributions to C(t)C(t) cancel, while time-independent perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2 figures. Streamlined with emphasis on physics over formalism; rewrote Section V E so that it refers to time-dependent (instead of non-equilibrium) effect

    Electronic Spin Transport in Dual-Gated Bilayer Graphene

    Full text link
    The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Next, the observation of a 5-fold enhancement in spin relaxation time in the encapsulated device highlights the significance of polymer residues on spin relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin relaxation time decreases monotonically as carrier concentration increases, and n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The sudden increase in the spin relaxation time with no corresponding signature in the charge transport suggests the presence of a magnetic resonance close to the charge neutrality point. We also demonstrate, for the first time, spin transport across bipolar p-n junctions in our dual-gated device architecture that fully integrates a sequence of encapsulated regions in its design. At low temperatures, strong suppression of the spin signal was observed while a transport gap was induced, which is interpreted as a novel manifestation of impedance mismatch within the spin channel

    Sign- and magnitude-tunable coupler for superconducting flux qubits

    Full text link
    We experimentally confirm the functionality of a coupling element for flux-based superconducting qubits, with a coupling strength JJ whose sign and magnitude can be tuned {\it in situ}. To measure the effective JJ, the groundstate of a coupled two-qubit system has been mapped as a function of the local magnetic fields applied to each qubit. The state of the system is determined by directly reading out the individual qubits while tunneling is suppressed. These measurements demonstrate that JJ can be tuned from antiferromagnetic through zero to ferromagnetic.Comment: Updated text and figure
    corecore