13 research outputs found

    The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion.

    Get PDF
    OBJECTIVE AND BACKGROUND: Activation of sterile inflammation after hepatic ischemia/reperfusion (I/R) culminates in liver injury. The route to liver damage starts with mitochondrial oxidative stress and cell death during early reperfusion. The link between mitochondrial oxidative stress, damage-associate molecular pattern (DAMP) release, and sterile immune signaling is incompletely understood and lacks clinical validation. The aim of the study was to validate this relation in a clinical liver I/R cohort and to limit DAMP release using a mitochondria-targeted antioxidant in I/R-subjected mice. METHODS: Plasma levels of the DAMPs high-mobility group box 1 (HMGB1), mitochondrial DNA, and nucleosomes were measured in 39 patients enrolled in an observational study who underwent a major liver resection with (N = 29) or without (N = 13) intraoperative liver ischemia. Circulating cytokine and neutrophil activation markers were also determined. In mice, the mitochondria-targeted antioxidant MitoQ was intravenously infused in an attempt to limit DAMP release, reduce sterile inflammation, and suppress I/R injury. RESULTS: In patients, HMGB1 was elevated following liver resection with I/R compared to liver resection without I/R. HMGB1 levels correlated positively with ischemia duration and peak post-operative transaminase (ALT) levels. There were no differences in mitochondrial DNA, nucleosome, or cytokine levels between the two groups. In mice, MitoQ neutralized hepatic oxidative stress and decreased HMGB1 release by ±50%. MitoQ suppressed transaminase release, hepatocellular necrosis, and cytokine production. Reconstituting disulfide HMGB1 during reperfusion reversed these protective effects. CONCLUSION: HMGB1 seems the most pertinent DAMP in clinical hepatic I/R injury. Neutralizing mitochondrial oxidative stress may limit DAMP release after hepatic I/R and reduce liver damage

    Liver Progenitor Cell Line HepaRG Differentiated in a Bioartificial Liver Effectively Supplies Liver Support to Rats with Acute Liver Failure

    Get PDF
    A major roadblock to the application of bioartificial livers is the need for a human liver cell line that displays a high and broad level of hepatic functionality. The human bipotent liver progenitor cell line HepaRG is a promising candidate in this respect, for its potential to differentiate into hepatocytes and bile duct cells. Metabolism and synthesis of HepaRG monolayer cultures is relatively high and their drug metabolism can be enhanced upon treatment with 2% dimethyl sulfoxide (DMSO). However, their potential for bioartificial liver application has not been assessed so far. Therefore, HepaRG cells were cultured in the Academic Medical Center bioartificial liver (AMC-BAL) with and without DMSO and assessed for their hepatic functionality in vitro and in a rat model of acute liver failure. HepaRG-AMC-BALs cultured without DMSO eliminated ammonia and lactate, and produced apolipoprotein A-1 at rates comparable to freshly isolated hepatocytes. Cytochrome P450 3A4 transcript levels and activity were high with 88% and 37%, respectively, of the level of hepatocytes. DMSO treatment of HepaRG-AMC-BALs reduced the cell population and the abovementioned functions drastically. Therefore, solely HepaRG-AMC-BALs cultured without DMSO were tested for efficacy in rats with acute liver failure (n = 6). HepaRG-AMC-BAL treatment increased survival time of acute liver failure rats ∼50% compared to acellular-BAL treatment. Moreover, HepaRG-AMC-BAL treatment decreased the progression of hepatic encephalopathy, kidney failure, and ammonia accumulation. These results demonstrate that the HepaRG-AMC-BAL is a promising bioartificial liver for clinical application

    Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats

    No full text
    Experimental acute lung injury models are often used to increase our knowledge on the acute respiratory distress syndrome (ARDS), however, existing animal models often do not take into account the impact of specific fluid strategies on the development of lung injury. In contrast, the current literature strongly suggests that fluid management strategies have a significant impact on clinical outcome of patients with ARDS. Thus, it is important to characterize the role of fluid management strategies in experimental models of lung injury. In this study we investigated the effect of two different fluid strategies on commonly used outcome variables in a short-term model of acute lung injury, in relation to age. Infant (2–3 weeks) and adult (3–4 months) Wistar rats received intratracheal instillations of lipopolysaccharide and 24 hours later were mechanically ventilated for 6 hours. During mechanical ventilation, rats from both age groups were randomized to either a standard or conservative intravenous fluid strategy. We found that the hemodynamic response in infant and adult rats was similar in both fluid strategies. Lung wet-to-dry ratios were lower in adult, but not in infant rats receiving the conservative fluid strategy as compared to the standard fluid strategy. There were age-related differences in markers of alveolar capillary barrier disruption and alveolar fluid clearance, yet these were unaffected by fluid strategy. Finally, we found significantly higher IL-1β and TNF-α concentrations in the adult rats treated with the conservative as compared to the standard fluid regimen. In conclusion, the choice of fluid strategy in mechanically ventilated rats with experimental LPS-induced acute lung injury has a significant effect on pulmonary extravascular water, an important and well-recognized lung injury marker, and on the local pro-inflammatory cytokine profiles. We advocate the use of a more uniform, conservative, fluid strategy regimen in experimental models of acute lung injury

    Evaluation of a novel bioartificial liver in rats with complete liver ischemia: treatment efficacy and species-specific alpha-GST detection to monitor hepatocyte viability

    Get PDF
    BACKGROUND/AIMS: There is an urgent need for an effective bioartificial liver system to bridge patients with fulminant hepatic failure to liver transplantation or to regeneration of their own liver. Recently, we proposed a bioreactor with a novel design for use as a bioartificial liver (BAL). The reactor comprises a spirally wound nonwoven polyester fabric in which hepatocytes are cultured (40 x 10(6) cells/ml) as small aggregates and homogeneously distributed oxygenation tubing for decentralized oxygen supply and CO2 removal. The aims of this study were to evaluate the treatment efficacy of our original porcine hepatocyte-based BAL in rats with fulminant hepatic failure due to liver ischemia (LIS) and to monitor the viability of the porcine hepatocytes in the bioreactor during treatment. The latter aim is novel and was accomplished by applying a new species-specific enzyme immunoassay (EIA) for the determination of porcine alpha-glutathione S-transferase (alpha-GST), a marker for hepatocellular damage. METHODS: Three experimental groups were studied: the first control group (LIS Control, n = 13) received a glucose infusion only; a second control group (LIS No-Cell-BAL, n = 8) received BAL treatment without cells; and the treated group (LIS Cell-BAL, n = 8) was connected to our BAL which had been seeded with 4.4 x 10(8) viable primary porcine hepatocytes. RESULTS/CONCLUSIONS: In contrast to previous comparable studies, BAL treatment significantly improved survival time in recipients with LIS. In addition, the onset of hepatic encephalopathy was significantly delayed and the mean arterial blood pressure significantly improved. Significantly lower levels of ammonia and lactate in the LIS Cell-BAL group indicated that the porcine hepatocytes in the bioreactor were metabolically activity. Low pig alpha-GST levels suggested that our bioreactor was capable of maintaining hepatocyte viability during treatment. These results provide a rationale for a comparable study in LIS-pigs as a next step towards potential clinical application

    Efficacy of HepaRG-AMC-BAL treatment of rats with ALF.

    No full text
    <p>Efficacy was demonstrated by a significantly increased survival time (<i>P</i> = 0.001) (A), the median clinical grading score for HE (B), increased time to reach clinical HE score 4 (<i>P</i> = 0.005) (C), lower blood ammonia levels (D), and lower plasma creatinine levels (E). Continuous lines indicate the control group and dotted lines indicate the experimental group. Values are expressed as median scores (B), or means ± standard deviations (D, E) (n = 5 to 6). Significance: * <i>P</i><0.05 <i>versus</i> control group.</p

    Transcript levels of −DMSO and +DMSO HepaRG-AMC-BALs.

    No full text
    <p>Transcript levels are indicated as % of mean mRNA levels of two human liver samples and normalized for 18S ribosomal RNA. The change in transcript levels of +DMSO BALs relative to the −DMSO BALs are indicated with ↑ for upregulation and ↓ for downregulation. Abbreviations: DMSO, dimethyl sulfoxide; AMC-BAL, Academic Medical Center-bioartificial liver. Values are given as means ± standard deviations (n = 5 to 6). <i>P</i> values refer to −DMSO <i>versus</i> +DMSO BALs.</p

    HA stainings of cross sections of −DMSO (A, C) and +DMSO HepaRG-AMC-BALs (B, D).

    No full text
    <p>Full transverse sections (A, B) show the spirally wound matrix layers with the gas capillaries (arrows) positioned in between. Details of the matrix (C, D) show the polyester matrix fibers (arrowheads) with HepaRG cells, and the web-shaped extracellular matrix in acellular areas in the matrix (D). Bars: 200 µm (A, B) and 20 µm (C, D).</p

    The pathophysiology of human obstructive cholestasis is mimicked in cholestatic Gold Syrian hamsters

    No full text
    Obstructive cholestasis causes liver injury via accumulation of toxic bile acids (BAs). Therapeutic options for cholestatic liver disease are limited, partially because the available murine disease models lack translational value. Profiling of time-related changes following bile duct ligation (BDL) in Gold Syrian hamsters revealed a biochemical response similar to cholestatic patients in terms of BA pool composition, alterations in hepatocyte BA transport and signaling, suppression of BA production, and adapted BA metabolism. Hamsters tolerated cholestasis well for up to 28days and progressed relatively slowly to fibrotic liver injury. Hepatocellular necrosis was absent, which coincided with preserved intrahepatic energy levels and only mild oxidative stress. The histological response to cholestasis in hamsters was similar to the changes seen in 17 patients with prolonged obstructive cholestasis caused by cholangiocarcinoma. Hamsters moreover upregulated hepatic fibroblast growth factor 15 (Fgf15) expression in response to BDL, which is a cytoprotective adaptation to cholestasis that hitherto had only been documented in cholestatic human livers. Hamster models should therefore be added to the repertoire of animal models used to study the pathophysiology of cholestatic liver diseas
    corecore