55 research outputs found

    Composition of Human Thrombus Assessed by Quantitative Colorimetric Angioscopic Analysis.

    Get PDF
    Background Angioscopy surpasses other diagnostic tools, such as angiography and intravascular ultrasound, in detecting arterial thrombus. This capability arises in part from the unique ability of angioscopy to assess true color during imaging. In practice, hardware-induced chromatic distortions and the subjectivity of human color perception subs

    Evolution of renal function and predictive value of serial renal assessments among patients with acute coronary syndrome: BIOMArCS study

    Get PDF
    Background: Impaired renal function predicts mortality in acute coronary syndrome (ACS), but its evolution immediately following index ACS and preceding next ACS has not been described in detail. We aimed to describe this evolution using serial measurements of creatinine, glomerular filtration rate [eGFRCr] and cystatin C [CysC]. Methods: F

    Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy

    Get PDF
    BACKGROUND: Phospholamban (PLN) is a critical regulator of calcium cycling and contractility in the heart. The loss of arginine at position 14 in PLN (R14del) is associated with dilated cardiomyopathy with a high prevalence of ventricular arrhythmias. How the R14 deletion causes dilated cardiomyopathy is poorly understood, and there are no disease-specific therapies. METHODS: We used single-cell RNA sequencing to uncover PLN R14del disease mechanisms in human induced pluripotent stem cells (hiPSC-CMs). We used both 2-dimensional and 3-dimensional functional contractility assays to evaluate the impact of modulating disease-relevant pathways in PLN R14del hiPSC-CMs. RESULTS: Modeling of the PLN R14del cardiomyopathy with isogenic pairs of hiPSC-CMs recapitulated the contractile deficit associated with the disease in vitro. Single-cell RNA sequencing revealed the induction of the unfolded protein response (UPR) pathway in PLN R14del compared with isogenic control hiPSC-CMs. The activation of UPR was also evident in the hearts from PLN R14del patients. Silencing of each of the 3 main UPR signaling branches (IRE1, ATF6, or PERK) by siRNA exacerbated the contractile dysfunction of PLN R14del hiPSC-CMs. We explored the therapeutic potential of activating the UPR with a small molecule activator, BiP (binding immunoglobulin protein) inducer X. PLN R14del hiPSC-CMs treated with BiP protein inducer X showed a dose-dependent amelioration of the contractility deficit in both 2-dimensional cultures and 3-dimensional engineered heart tissues without affecting calcium homeostasis. CONCLUSIONS: Together, these findings suggest that the UPR exerts a protective effect in the setting of PLN R14del cardiomyopathy and that modulation of the UPR might be exploited therapeutically

    Serially measured high-sensitivity cardiac troponin T, N-terminal-pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, and growth differentiation factor 15 for risk assessment after acute coronary syndrome: the BIOMArCS cohort

    Get PDF
    Aims: Evidence regarding the role of serial measurements of biomarkers for risk assessment in post-acute coronary syndrome (ACS) patients is limited. The aim was to explore the prognostic value of four, serially measured biomarkers in a large, real-world cohort of post-ACS patients.// Methods and results: BIOMArCS is a prospective, multi-centre, observational study in 844 post-ACS patients in whom 12 218 blood samples (median 17 per patient) were obtained during 1-year follow-up. The longitudinal patterns of high-sensitivity cardiac troponin T (hs-cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), and growth differentiation factor 15 (GDF-15) were analysed in relation to the primary endpoint (PE) of cardiovascular mortality and recurrent ACS using multivariable joint models. Median age was 63 years, 78% were men and the PE was reached by 45 patients. The average biomarker levels were systematically higher in PE compared with PE-free patients. After adjustment for 6-month post-discharge Global Registry of Acute Coronary Events score, 1 standard deviation increase in log[hs-cTnT] was associated with a 61% increased risk of the PE [hazard ratio (HR) 1.61, 95% confidence interval (CI) 1.02–2.44, P = 0.045], while for log[GDF-15] this was 81% (HR 1.81, 95% CI 1.28–2.70, P = 0.001). These associations remained significant after multivariable adjustment, while NT-proBNP and hs-CRP were not. Furthermore, GDF-15 level showed an increasing trend prior to the PE (Structured Graphical Abstract).// Conclusion: Longitudinally measured hs-cTnT and GDF-15 concentrations provide prognostic value in the risk assessment of clinically stabilized patients post-ACS.// Clinical Trial Registration: The Netherlands Trial Register. Currently available at URL https://trialsearch.who.int/; Unique Identifiers: NTR1698 and NTR1106

    Serially measured high-sensitivity cardiac troponin T, N-terminal-pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, and growth differentiation factor 15 for risk assessment after acute coronary syndrome:the BIOMArCS cohort

    Get PDF
    Aims: Evidence regarding the role of serial measurements of biomarkers for risk assessment in post-acute coronary syndrome (ACS) patients is limited. The aim was to explore the prognostic value of four, serially measured biomarkers in a large, real-world cohort of post-ACS patients. Methods and results: BIOMArCS is a prospective, multi-centre, observational study in 844 post-ACS patients in whom 12 218 blood samples (median 17 per patient) were obtained during 1-year follow-up. The longitudinal patterns of high-sensitivity cardiac troponin T (hs-cTnT), N-terminal-pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), and growth differentiation factor 15 (GDF-15) were analysed in relation to the primary endpoint (PE) of cardiovascular mortality and recurrent ACS using multivariable joint models. Median age was 63 years, 78% were men and the PE was reached by 45 patients. The average biomarker levels were systematically higher in PE compared with PE-free patients. After adjustment for 6-month post-discharge Global Registry of Acute Coronary Events score, 1 standard deviation increase in log[hs-cTnT] was associated with a 61% increased risk of the PE [hazard ratio (HR) 1.61, 95% confidence interval (CI) 1.02-2.44, P = 0.045], while for log[GDF-15] this was 81% (HR 1.81, 95% CI 1.28-2.70, P = 0.001). These associations remained significant after multivariable adjustment, while NT-proBNP and hs-CRP were not. Furthermore, GDF-15 level showed an increasing trend prior to the PE (Structured Graphical Abstract). Conclusion: Longitudinally measured hs-cTnT and GDF-15 concentrations provide prognostic value in the risk assessment of clinically stabilized patients post-ACS. Clinical Trial Registration: The Netherlands Trial Register. Currently available at URL https://trialsearch.who.int/; Unique Identifiers: NTR1698 and NTR1106.</p

    Cohort profile of BIOMArCS: The BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands

    Get PDF
    __Purpose:__ Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. __Participants:__ BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. __Methods and analysis:__ We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-Term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for nonfatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS

    In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1

    Get PDF
    Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair

    Identification of a Putative Network of Actin-Associated Cytoskeletal Proteins in Glomerular Podocytes Defined by Co-Purified mRNAs

    Get PDF
    The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the structural integrity of the actin cytoskeleton in podocytes as well as other polarized cell types

    Mesenchymal stem cells: from experiment to clinic

    Get PDF
    There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients

    Heterozygous Variants in KDM4B Lead to Global Developmental Delay and Neuroanatomical Defects

    Get PDF
    KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery
    corecore