128 research outputs found

    Studies on the function of Brutoll 's tyrosine kinase in B cell development

    Get PDF
    Each individual organism has to protect itself against a large variety of infectious microbial agents, such as bacteria, fungi and parasites to prevent pathological damage and death. In vertebrates, defense mechanisms against foreign substances, antigens, have evolved in the immune system, which has two functional divisions: the 'innate' immune system and the 'adaptive' immune system. The 'innate' immune system is aspecific and acts as a first line of defense, mediated by cells from thc myeloid lineage and soluble factors like complement and lysozyme. The main function of the 'innate' immune system is to avoid entering of micro or gall isms into the body and to clear it of killed pathogens. In contrast to the 'adaptive' immune system, repeated infection does not improve the resistance of the 'innate' immune system. If the first line of defense is defeated, the second line of defense, the 'adaptive' immune system, which is very specific and can develop memory to earlier accounted pathogens, is activated. The specific immune response is mediated by lymphocytes belonging to the B andlor T lineages (B and T cells). Both Band T cells express receptor molecules on their cell membrane, which specifically can bind antigens. The T ceH receptor (TCR) can only bind antigens if these are processed into small peptides, and presented by major histocompatibility complex (MHC) class I molecules on the surface of host cells and MHC class II molecules on the surface of antigen presenting cells. Intracellular antigens are processed into small peptides and presented on the surface by the MHC class I complex. Recognition of the MHC-class I-peptide complex by the TCR of cytotoxic T cells results in killing of the presenting host cells. MHC class II molecules present processed peptides, which are derived from external clldocytosed antigens. Recognition of MHC class II-peptide complexes by the TCR ofT helper (T H) cells results in the production of cytokines and stimulation of cells of the immune system ('cellular' immune response). The B cell receptor (BCR) binds to unprocessed antigens. Stimulation of the BCR results in a 'humoral' immune response, i.e. the secretion of soluble immunoglobulins (Ig)J with the same binding specificity as the BCR to the triggering antigen

    A Dual Reporter Mouse Model of the Human β-Globin Locus: Applications and Limitations

    Get PDF
    The human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin. Thalassemia is one of the commonest inherited disorders in the world, which results in quantitative defects of the globins, based on a number of genome variations found in the globin gene clusters. Hereditary persistence of fetal hemoglobin (HPFH) also caused by similar types of genomic alterations can compensate for the loss of adult hemoglobin. Understanding the regulation of the human γ-globin gene expression is a challenge for the treatment of thalassemia. A mouse model that facilitates high-throughput assays would simplify such studies. We have generated a transgenic dual reporter mouse model by tagging the γ- and β-globin genes with GFP and DsRed fluorescent proteins respectively in the endogenous human β-globin locus. Erythroid cell lines derived from this mouse model were tested for their capacity to reactivate the γ-globin gene. Here, we discuss the applications and limitations of this fluorescent reporter model to study the genetic basis of red blood cell disorders and the potential use of such model systems in high-throughput screens for hemoglobinopathies therapeutics

    The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA insterstrand cross-link-induced double-strand breaks

    Get PDF
    Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination

    Terminal osseous dysplasia with pigmentary defects and cardiomyopathy caused by a novel FLNA variant

    Get PDF
    Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X‐linked filaminopathies caused by a variety of FLNA‐variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis‐splicing of exon 31 predicting the production of a FLNA‐protein with an in‐frame‐deletion of 16 residues identical to the miss‐splicing‐effect of the recurrent TODPD c.5217G>A variant. This mis‐spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X‐inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA‐variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy‐related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before

    Endogenous WNT signals mediate BMP-induced and spontaneous differentiation of epiblast stem cells and human embryonic stem cells

    Get PDF
    Therapeutic application of human embryonic stem cells (hESCs) requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs). WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs

    Clinical predictors of 3- and 6-month outcome for mild traumatic brain injury patients with a negative head CT scan in the emergency department: A TRACK-TBI pilot study

    Get PDF
    Aconsiderable subset of mild traumatic brain injury (mTBI) patients fail to return to baseline functional status at or beyond 3 months postinjury. Identifying at-risk patients for poor outcome in the emergency department (ED) may improve surveillance strategies and referral to care. Subjects with mTBI (Glasgow Coma Scale 13–15) and negative ED initial head CT < 24 h of injury, completing 3- or 6-month functional outcome (Glasgow Outcome Scale-Extended; GOSE), were extracted from the prospective, multicenter Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study. Outcomes were dichotomized to full recovery (GOSE = 8) vs functional deficits (GOSE < 8). Univariate predictors with p < 0.10 were considered for multivariable regression. Adjusted odds ratios (AOR) were reported for outcome predictors. Significance was assessed at p < 0.05. Subjects who completed GOSE at 3- and 6-month were 211 (GOSE < 8: 60%) and 185 (GOSE < 8: 65%). Risk factors for 6-month GOSE < 8 included less education (AOR = 0.85 per-year increase, 95% CI: (0.74–0.98)), prior psychiatric history (AOR = 3.75 (1.73–8.12)), Asian/minority race (American Indian/Alaskan/Hawaiian/Pacific Islander) (AOR = 23.99 (2.93–196.84)), and Hispanic ethnicity (AOR = 3.48 (1.29–9.37)). Risk factors for 3-month GOSE < 8 were similar with the addition of injury by assault predicting poorer outcome (AOR = 3.53 (1.17–10.63)). In mTBI patients seen in urban trauma center EDs with negative CT, education, injury by assault, Asian/minority race, and prior psychiatric history emerged as risk factors for prolonged disability

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd

    Quality indicators for patients with traumatic brain injury in European intensive care units

    Get PDF
    Background: The aim of this study is to validate a previously published consensus-based quality indicator set for the management of patients with traumatic brain injury (TBI) at intensive care units (ICUs) in Europe and to study its potential for quality measur
    corecore