1,160 research outputs found
Stress effects in structure formation
Residual velocity dispersion in cold dark matter induces stresses which lead
to effects that are absent in the idealized dust model. A previous Newtonian
analysis showed how this approach can provide a theoretical foundation for the
phenomenological adhesion model. We develop a relativistic kinetic theory
generalization which also incorporates the anisotropic velocity dispersion that
will typically be present. In addition to density perturbations, we consider
the rotational and shape distortion properties of clustering. These quantities
together characterize the linear development of density inhomogeneity, and we
find exact solutions for their evolution. As expected, the corrections are
small and arise only in the decaying modes, but their effect is interesting.
One of the modes for density perturbations decays less rapidly than the
standard decaying mode. The new rotational mode generates precession of the
axis of rotation. The new shape modes produce additional distortion that
remains frozen in during the subsequent (linear) evolution, despite the rapid
decay of the terms that caused it.Comment: significantly improved discussion of kinetic theory of CDM velocity
dispersion; to appear Phys. Rev.
Inflation driven by causal heat flux
We find a simple inflationary solution in an inhomogeneous spacetime with
heat flux. The heat flux obeys a causal transport equation, and counteracts the
inflationary decrease of energy density. At late times, the heat flux tends to
zero and the fluid approaches the equation of state .Comment: Latex 5 pages; to appear Gen. Rel. Gra
Structure formation on the brane: A mimicry
We show how braneworld cosmology with bulk matter can explain structure
formation. In this scenario, the nonlocal corrections to the Friedmann
equations supply a Weyl fluid that can dominate over matter at late times due
to the energy exchange between the brane and the bulk. We demonstrate that the
presence of the Weyl fluid radically changes the perturbation equations, which
can take care of the fluctuations required to account for the large amount of
inhomogeneities observed in the local universe. Further, we show how this Weyl
fluid can mimic dark matter. We also investigate the bulk geometry responsible
for the scenario.Comment: 7 pages. Matches published versio
Anisotropic stresses in inhomogeneous universes
Anisotropic stress contributions to the gravitational field can arise from
magnetic fields, collisionless relativistic particles, hydrodynamic shear
viscosity, gravitational waves, skew axion fields in low-energy string
cosmologies, or topological defects. We investigate the effects of such
stresses on cosmological evolution, and in particular on the dissipation of
shear anisotropy. We generalize some previous results that were given for
homogeneous anisotropic universes, by including small inhomogeneity in the
universe. This generalization is facilitated by a covariant approach. We find
that anisotropic stress dominates the evolution of shear, slowing its decay.
The effect is strongest in radiation-dominated universes, where there is slow
logarithmic decay of shear.Comment: 7 pages Revte
Lie symmetries for equations in conformal geometries
We seek exact solutions to the Einstein field equations which arise when two
spacetime geometries are conformally related. Whilst this is a simple method to
generate new solutions to the field equations, very few such examples have been
found in practice. We use the method of Lie analysis of differential equations
to obtain new group invariant solutions to conformally related Petrov type D
spacetimes. Four cases arise depending on the nature of the Lie symmetry
generator. In three cases we are in a position to solve the master field
equation in terms of elementary functions. In the fourth case special solutions
in terms of Bessel functions are obtained. These solutions contain known models
as special cases.Comment: 19 pages, To appear in J. Phys.
A classification of spherically symmetric spacetimes
A complete classification of locally spherically symmetric four-dimensional
Lorentzian spacetimes is given in terms of their local conformal symmetries.
The general solution is given in terms of canonical metric types and the
associated conformal Lie algebras. The analysis is based upon the local
conformal decomposition into 2+2 reducible spacetimes and the Petrov type. A
variety of physically meaningful example spacetimes are discussed
Black holes and wormholes in AdS branes
In this work we have derived a class of geometries which describe black holes
and wormholes in Randall-Sundrum-type brane models, focusing mainly on
asymptotically anti-de Sitter backgrounds. We show that by continuously
deforming the usual four dimensional vacuum background, a specific family of
solutions is obtained. Maximal extensions of the solutions are presented, and
their causal structures are discussed.Comment: 7 pages, 4 figures. Published version in Physical Review
New Vistas in Braneworld Cosmology
Traditionally, higher-dimensional cosmological models have sought to provide
a description of the fundamental forces in terms of a unifying geometrical
construction. In this essay we discuss how, in their present incarnation,
higher-dimensional `braneworld' models might provide answers to a number of
cosmological puzzles including the issue of dark energy and the nature of the
big-bang singularity.Comment: Honorable mention in the 2002 Essay Competition of the Gravity
Research Foundation. 10 pages, 2 figure
Exact isotropic cosmologies with local fractal number counts
We construct an exact relativistic cosmology in which an inhomogeneous but
isotropic local region has fractal number counts and matches to a homogeneous
background at a scale of the order of Mpc. We show that Einstein's
equations and the matching conditions imply either a nonlinear Hubble law or a
very low large-scale density.Comment: revised version, to appear Class. Q. Grav.; minor corrections
following eqn 16, additional comments on relation to other work, some new
reference
- âŠ