25 research outputs found

    An Integrated Metabolomic and Genomic Mining Workflow to Uncover the Biosynthetic Potential of Bacteria

    Get PDF
    Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient “mining” workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting

    Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

    Get PDF
    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data

    Safety and immunogenicity of a primary series and booster dose of the meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) in healthy children aged 1-9 years: two phase 2 randomised, controlled, observer-blinded studies.

    No full text
    BACKGROUND: The meningococcal serogroup B-factor H binding protein vaccine (MenB-FHbp) is licensed for use in children aged 10 years or older for protection against invasive serogroup B meningococcal disease. Because young children are at increased risk of invasive meningococcal disease, MenB-FHbp clinical data in this population are needed. METHODS: We conducted two phase 2 randomised, controlled, observer-blinded studies including healthy toddlers (age 12-23 months) across 26 Australian, Czech, Finnish, and Polish centres, and older children (age 2-9 years) across 14 Finnish and Polish centres. Exclusion criteria included previous vaccinations against serogroup B meningococcus or hepatitis A virus (HAV), and chronic antibiotic use. Toddlers were randomly allocated (2:1) via an interactive response technology system to receive either 60 μg or 120 μg MenB-FHbp or HAV vaccine and saline (control). Older children were randomly allocated (3:1) to receive 120 μg MenB-FHbp or control, with stratification by age group (2-3 years and 4-9 years). All vaccinations were administered as three doses (0, 2, and 6 months, with only saline given at 2 months in the control group). Toddlers who received 120 μg MenB-FHbp could receive a 120 μg booster dose 24 months after the end of the primary series. The percentages of participants with serum bactericidal activity using human complement (hSBA) titres at or above the lower limit of quantification (LLOQ; all greater than the 1:4 correlate of protection) against four test strains of serogroup B meningococcus 1 month after the third dose (primary immunogenicity endpoint) were measured in the evaluable immunogenicity populations (participants who received the vaccine as randomised, had available and determinate hSBA results, and had no major protocol violations). Not all participants were tested against all strains because of serum sample volume constraints. The frequencies of reactogenicity and adverse events after each dose were recorded in the safety population (all participants who received at least one dose and had safety data available). These studies are registered with ClinicalTrials.gov (NCT02534935 and NCT02531698) and are completed. FINDINGS: Between Aug 31, 2015, and Aug 22, 2016, for the toddler study and between Aug 27, 2015, and March 7, 2016, for the older children study, we enrolled and randomly allocated 396 toddlers (60 μg MenB-FHbp group n=44; 120 μg MenB-FHbp group n=220; control group n=132) and 400 older children (120 μg MenB-FHbp group n=294; control group n=106). 1 month after the third dose, the proportions of participants with hSBA titres at or above the LLOQ ranged across test strains from 85·0% (95% CI 62·1-96·8; 17 of 20 participants) to 100·0% (82·4-100·0; 19 of 19) in toddlers receiving 60 μg MenB-FHbp, and from 71·6% (61·4-80·4; 68 of 95) to 100·0% (96·2-100·0; 95 of 95) in toddlers receiving 120 μg MenB-FHbp, and from 79·1% (71·2-85·6; 106 of 134) to 100·0% (97·4-100·0; 139 of 139) in children aged 2-9 years receiving 120 μg MenB-FHbp. hSBA titres peaked at 1 month after the third primary dose of MenB-FHbp and then declined over time. 24 months after the third dose in the toddler study, the proportions with hSBA titres at or above the LLOQ ranged from 0·0% (0·0-17·6; 0 of 19 participants) to 41·2% (18·4-67·1; seven of 17) in those who received 60 μg MenB-FHbp and from 3·7% (0·8-10·4; three of 81) to 22·8% (14·1-33·6; 18 of 79) in those who received 120 μg MenB-FHbp. 1 month after the booster dose in toddlers, the proportions with hSBA titres at or above the LLOQ were higher than at 1 month after the primary series. MenB-FHbp reactogenicity was mostly transient and of mild to moderate severity. Adverse event frequency was similar between the MenB-FHbp and control groups and less frequent following MenB-FHbp booster than following primary doses. Two participants from the toddler study (both from the 120 μg MenB-FHbp group) and four from the older children study (three from the 120 μg MenB-FHbp group and one from the control group) were withdrawn from the study because of adverse events. INTERPRETATION: MenB-FHbp was well tolerated and induced protective immune responses in a high proportion of participants. These findings support a favourable MenB-FHbp immunogenicity and reactogenicity profile in young children, a population at increased risk of adverse invasive meningococcal disease outcomes.Helen S Marshall, Timo Vesikari, Peter C Richmond, Jacek Wysocki, Leszek Szenborn, Johannes Beeslaar, Jason D Maguire, Paul Balmer, Robert O, Neill, Annaliesa S Anderson, Jean-Louis Prégaldien, Roger Maansson, Han-Qing Jiang, John L Pere

    An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria.

    Get PDF
    Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient "mining" workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting
    corecore