159 research outputs found

    “Improvisation ≠ Randomness”: a Study on Playful Rule-Based Human-Robot Interactions

    Get PDF
    To develop and sustain rich social interactions between humans and robots, previous research has mostly looked at task-oriented performance metrics or the ability for a robot to adequately express messages, emotions, or intents. In contrast, our research starts from the premise that movement, as a nonverbal modality of social interaction, can cover other essential aspects of social interaction that do not have to do with the expression of messages, inner states, or drives but that nonetheless contribute to improving the quality of interaction. These aspects have to do with interaction dynamics and highly depend on appropriate action choice. Drawing inspiration from rule-based improvisation, this paper seeks to show that there exists implicit expert knowledge that can be used to inform these movement action choices, contributing to rich, playful, and non goal-oriented interactions between humans and robots. We present an experimental study conducted at a performing arts festival, in which participants interacted with a robot in three simple rule-based movement games, in two conditions: one where the robot was fully controlled by an improvisation expert (Improv Timing/Improv Action) and one where the timing of the actions was controlled by the expert but the robot’s action choices were drawn randomly (Improv Timing/Random Action). This was done in order to focus on action choice, beyond the timing of a response. Our results show that the Improv Timing/Improv Action condition not only performs better in terms of anthropomorphism and animacy, but also increases the interest of people in interacting with the robot for longer periods of time. These results serve as preliminary evidence of how improvisational knowledge in this context contributes to improving the quality of an interaction, and point at the value of further work in this field

    Accurate detection of copy number aberrations in FFPE samples using the mFAST-SeqS approach

    Get PDF
    Background: Shallow whole genome sequencing (Shallow-seq) is used to determine the copy number aberrations (CNA) in tissue samples and circulating tumor DNA. However, costs of NGS and challenges of small biopsies ask for an alternative to the untargeted NGS approaches. The mFAST-SeqS approach, relying on LINE-1 repeat amplification, showed a good correlation with Shallow-seq to detect CNA in blood samples. In the present study, we evaluated whether mFAST-SeqS is suitable to assess CNA in small formalin-fixed paraffin-embedded (FFPE) tissue specimens, using vulva and anal HPV-related lesions. Methods: Seventy-two FFPE samples, including 36 control samples (19 vulva;17 anal) for threshold setting and 36 samples (24 vulva; 12 anal) for clinical evaluation, were analyzed by mFAST-SeqS. CNA in vulva and anal lesions were determined by calculating genome-wide and chromosome arm-specific z-scores in comparison with the respective control samples. Sixteen samples were also analyzed with the conventional Shallow-seq approach. Results: Genome-wide z-scores increased with the severity of disease, with highest values being found in cancers. In vulva samples median and inter quartile ranges [IQR] were 1[0–2] in normal tissues (n = 4), 3[1–7] in premalignant lesions (n = 9) and 21[13–48] in cancers (n = 10). In anal samples, median [IQR] were 0[0–1] in normal tissues (n = 4), 14[6–38] in premalignant lesions (n = 4) and 18[9–31] in cancers (n = 4). At threshold 4, all controls were CNA negative, while 8/13 premalignant lesions and 12/14 cancers were CNA positive. CNA captured by mFAST-SeqS were mostly also found by Shallow-seq. Conclusion: mFAST-SeqS is easy to perform, requires less DNA and less sequencing reads reducing costs, thereby providing a good alternative for Shallow-seq to determine CNA in small FFPE samples.</p

    Accurate detection of copy number aberrations in FFPE samples using the mFAST-SeqS approach

    Get PDF
    Background: Shallow whole genome sequencing (Shallow-seq) is used to determine the copy number aberrations (CNA) in tissue samples and circulating tumor DNA. However, costs of NGS and challenges of small biopsies ask for an alternative to the untargeted NGS approaches. The mFAST-SeqS approach, relying on LINE-1 repeat amplification, showed a good correlation with Shallow-seq to detect CNA in blood samples. In the present study, we evaluated whether mFAST-SeqS is suitable to assess CNA in small formalin-fixed paraffin-embedded (FFPE) tissue specimens, using vulva and anal HPV-related lesions. Methods: Seventy-two FFPE samples, including 36 control samples (19 vulva;17 anal) for threshold setting and 36 samples (24 vulva; 12 anal) for clinical evaluation, were analyzed by mFAST-SeqS. CNA in vulva and anal lesions were determined by calculating genome-wide and chromosome arm-specific z-scores in comparison with the respective control samples. Sixteen samples were also analyzed with the conventional Shallow-seq approach. Results: Genome-wide z-scores increased with the severity of disease, with highest values being found in cancers. In vulva samples median and inter quartile ranges [IQR] were 1[0–2] in normal tissues (n = 4), 3[1–7] in premalignant lesions (n = 9) and 21[13–48] in cancers (n = 10). In anal samples, median [IQR] were 0[0–1] in normal tissues (n = 4), 14[6–38] in premalignant lesions (n = 4) and 18[9–31] in cancers (n = 4). At threshold 4, all controls were CNA negative, while 8/13 premalignant lesions and 12/14 cancers were CNA positive. CNA captured by mFAST-SeqS were mostly also found by Shallow-seq. Conclusion: mFAST-SeqS is easy to perform, requires less DNA and less sequencing reads reducing costs, thereby providing a good alternative for Shallow-seq to determine CNA in small FFPE samples.</p

    Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    Get PDF
    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted

    Evaluation of six methylation markers derived from genome-wide screens for detection of cervical precancer and cancer

    Get PDF
    Aim: To evaluate the triage performance of six host-cell DNA methylation markers derived from two genome-wide discovery screens for detection of cervical precancer (cervical intraepithelial neoplasia 3 [CIN]) and cancer. Materials & methods: Human papillomavirus-positive cervical scrapes of controls (≤CIN1; n = 352) and women diagnosed with CIN3 (n = 175) or cervical cancer (n = 50) were analyzed for methylation of ASCL1, LHX8, ST6GALNAC5, GHSR, SST and ZIC1. Results: Methylation levels increased significantly with disease severity (all markers p 0.800 after leave-one-out cross-validation. Bi-marker panel ASCL1/LHX8 had highest area under the curve (0.882), and detected 83.4% of CIN3 and all cervical cancers at specificity of 82.4%. Conclusion: All six methylation markers showed an equivalent, high performance for the triage of human papillomavirus-positive women using cervical scrapes with complementarity between markers

    Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Get PDF
    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF) or a high-fat/fish oil (HF/FO) diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results: The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL) activities were also not altered in CB1-/- mice. Conclusions: These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

    Does "one Size Fits All"?:Rethinking FIGO Depth of Invasion Measurements in Vulvar Cancer

    Get PDF
    Depth of invasion (DOI) is an important diagnostic parameter in patients with vulvar carcinoma, where a cutoff value of 1 mm largely determines the tumor stage and the need for groin surgery. DOI measurement should be reproducible and straightforward. In light of the new recommendation on how to measure DOI in the International Federation of Gynecology and Obstetrics (FIGO) staging system 2021, an exploratory study was conducted on the current practice of DOI measurement in vulvar cancer. In this study of 26 selected cases, 10 pathologists with high exposure to vulvar cancer cases in daily practice assessed both the conventional (FIGO 2009) and alternative (FIGO 2021) DOI methods for applicability and preference. In this set of cases, the DOI measurement according to FIGO 2009 was generally considered easier to apply than the measurement according to FIGO 2021, with applicability being rated as "easy to reasonable"in 76.9% versus 38.5% of cases, respectively (P=0.005). The preferred method was FIGO 2009 or tumor thickness in 14 cases and FIGO 2021 in 6 cases. No invasion was preferred in 1 case. For the remaining 5 cases, half of the pathologists opted for the FIGO 2009 method and half for the FIGO 2021 method. Although the FIGO 2009 method proved to be more readily applicable in most of the cases studied, the method may differ for each case. There may not be a "one size fits all"solution for all cases of vulvar cancer.</p
    corecore