2,055 research outputs found

    Temperature dependence of the superconducting gap anisotropy in Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}O8+x_{8+x}

    Full text link
    We present the first detailed data of the momentum-resolved, temperature dependence of the superconducting gap of Bi2Sr2Ca1Cu2O8+xBi_{2}Sr_{2}Ca_{1}Cu_{2}O_{8+x}, complemented by similar data on the intensity of the photoemission superconducting condensate spectral area. The gap anisotropy between the ΓMˉ\Gamma-\bar{M} and ΓX\Gamma-X directions increases markedly with increasing temperature, contrary to what happens for conventional anisotropic-gap superconductors such as lead. Specifically, the size of the superconducting gap along the ΓX\Gamma-X direction decreases to values indistinguishable from zero at temperatures for which the gap retains virtually full value along the ΓMˉ\Gamma-\bar{M} direction.Comment: APS_REVTEX. 19 pages, including 8 figures, available upon request. UW-Madison preprin

    Localized electronic states and photoemission superconducting condensate in Bi2_{2}Sr2_{2}Ca1_{1}Cu2_{2}O8+x_{8+x}

    Full text link
    We present the first detailed angle-resolved photoemission evidence that there are two types of carriers that contribute to the photoemission superconducting condensate in Bi2Sr2Ca1Cu2O8+xBi_{2}Sr_{2}Ca_{1}Cu_{2}O_{8+x}. Our data indicate that both itinerant and somewhat localized normal state carriers can contribute to the formation of Cooper pairs.Comment: APS_Revtex, 11 pages, including 3 figures, available upon request. UW-Madison preprint#

    Collective modes of asymmetric nuclear matter in Quantum HadroDynamics

    Full text link
    We discuss a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics (QHDQHD) effective field picture of Nuclear Matter ({\it NM}). From the linearized kinetic equations we get the dispersion relations of the propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar and vector channel contributions. A beautiful ``mirror'' structure in the form of the dynamical response in the isoscalar/isovector degree of freedom is revealed, with a complete parallelism in the role respectively played by the compressibility and the symmetry energy. All that strongly supports the introduction of an explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the influence of this coupling (to a δ\delta-meson-like effective field) on the collective response of asymmetric nuclear matter (ANMANM). Interesting contributions are found on the propagation of isovector-like modes at normal density and on an expected smooth transition to isoscalar-like oscillations at high baryon density. Important ``chemical'' effects on the neutron-proton structure of the mode are shown. For dilute ANMANM we have the isospin distillation mechanism of the unstable isoscalar-like oscillations, while at high baryon density we predict an almost pure neutron wave structure of the propagating sounds.Comment: 18 pages (LATEX), 8 Postscript figures, uses "epsfig

    A novel capacitive detection principle for Coriolis mass flow sensors enabling range/sensitivity tuning

    Get PDF
    We report on a novel capacitive detection principle for Coriolis mass flow sensors which allows for one order of magnitude increased sensitivity. The detection principle consists of two pairs of comb-structures: one pair produces two signals with a phase shift directly dependent on the mass flow, the other pair is used to cancel the actuation signal. This results in larger phase shifts for the same mass flows. The range and sensitivity of the sensor can be tuned by changing the amount of cancellation of the actuation frequency, e.g. the size ratio between the comb-pairs

    The effects of mindfulness-based stress reduction program on the mental health of family caregivers: a randomized controlled trial

    Get PDF
    <b>Background</b> Caregivers of people with chronic conditions are more likely than non-caregivers to have depression and emotional problems. Few studies have examined the effectiveness of mindfulness-based stress reduction (MBSR) in improving their mental well-being. <p></p> <b>Methods</b> Caregivers of persons with chronic conditions who scored 7 or above in the Caregiver Strain Index were randomly assigned to the 8-week MBSR group (n = 70) or the self-help control group (n = 71). Validated instruments were used to assess the changes in depressive and anxiety symptoms, quality of life, self-efficacy, self-compassion and mindfulness. Assessments were conducted at baseline, post-intervention and at the 3-month follow-up. <p></p> <b>Results </b>Compared to the participants in the control group, participants in the MBSR group had a significantly greater decrease in depressive symptoms at post-intervention and at 3 months post-intervention (p < 0.01). The improvement in state anxiety symptoms was significantly greater among participants in the MBSR group than those of the control group at post-intervention (p = 0.007), although this difference was not statistically significant at 3 months post-intervention (p = 0.084). There was also a statistically significant larger increase in self-efficacy (controlling negative thoughts; p = 0.041) and mindfulness (p = 0.001) among participants in the MBSR group at the 3-month follow-up compared to the participants in the control group. No statistically significant group effects (MBSR vs. control) were found in perceived stress, quality of life or self-compassion. <p></p> <b>Conclusions </b>MBSR appears to be a feasible and acceptable intervention to improve mental health among family caregivers with significant care burden, although further studies that include an active control group are needed to make the findings more conclusive

    Generalized Competing Glauber-type Dynamics and Kawasaki-type Dynamics

    Full text link
    In this article, we have given a systematic formulation of the new generalized competing mechanism: the Glauber-type single-spin transition mechanism, with probability p, simulates the contact of the system with the heat bath, and the Kawasaki-type spin-pair redistribution mechanism, with probability 1-p, simulates an external energy flux. These two mechanisms are natural generalizations of Glauber's single-spin flipping mechanism and Kawasaki's spin-pair exchange mechanism respectively. On the one hand, the new mechanism is in principle applicable to arbitrary systems, while on the other hand, our formulation is able to contain a mechanism that just directly combines single-spin flipping and spin-pair exchange in their original form. Compared with the conventional mechanism, the new mechanism does not assume the simplified version and leads to greater influence of temperature. The fact, order for lower temperature and disorder for higher temperature, will be universally true. In order to exemplify this difference, we applied the mechanism to 1D Ising model and obtained analytical results. We also applied this mechanism to kinetic Gaussian model and found that, above the critical point there will be only paramagnetic phase, while below the critical point, the self-organization as a result of the energy flux will lead the system to an interesting heterophase, instead of the initially guessed antiferromagnetic phase. We studied this process in details.Comment: 11 pages,1 figure

    A microscopic estimate of the nuclear matter compressibility and symmetry energy in relativistic mean-field models

    Get PDF
    The relativistic mean-field plus RPA calculations, based on effective Lagrangians with density-dependent meson-nucleon vertex functions, are employed in a microscopic analysis of the nuclear matter compressibility and symmetry energy. We compute the isoscalar monopole and the isovector dipole response of 208^{208}Pb, as well as the differences between the neutron and proton radii for 208^{208}Pb and several Sn isotopes. The comparison of the calculated excitation energies with the experimental data on the giant monopole resonance in 208^{208}Pb, restricts the nuclear matter compression modulus of structure models based on the relativistic mean-field approximation to Knm250270K_{\rm nm}\approx 250 - 270 MeV. The isovector giant dipole resonance in 208^{208}Pb, and the available data on differences between neutron and proton radii, limit the range of the nuclear matter symmetry energy at saturation (volume asymmetry) to 32 MeV a4\leq a_4 \leq 36 MeV.Comment: 16 pages, 6 figure

    Miniature large range multi-axis force-torque sensor for biomechanical applications

    Get PDF
    A miniature force sensor for the measurement of forces and moments at a human fingertip is designed and realized. Thin silicon pillars inside the sensor provide in-plane guidance for shear force measurement and provide the spring constant in normal direction. A corrugated silicon ring around the force sensitive area provides the spring constant in shear direction and seals the interior of the sensor. To detect all load components, capacitive read-out is used. A novel electrode pattern results in a large shear force sensitivity. The fingertip force sensor has a wide force range of up to 60 N in normal direction, ± 30 N in shear direction and a torque range of ± 25 N mm

    Interplay among critical temperature, hole content, and pressure in the cuprate superconductors

    Full text link
    Within a BCS-type mean-field approach to the extended Hubbard model, a nontrivial dependence of T_c on the hole content per unit CuO_2 is recovered, in good agreement with the celebrated non-monotonic universal behaviour at normal pressure. Evaluation of T_c at higher pressures is then made possible by the introduction of an explicit dependence of the tight-binding band and of the carrier concentration on pressure P. Comparison with the known experimental data for underdoped Bi2212 allows to single out an `intrinsic' contribution to d T_c / d P from that due to the carrier concentration, and provides a remarkable estimate of the dependence of the inter-site coupling strength on the lattice scale.Comment: REVTeX 8 pages, including 5 embedded PostScript figures; other required macros included; to be published in Phys. Rev. B (vol. 54
    corecore