135,851 research outputs found
Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras
Polynomial-in-time dependent symmetries are analysed for polynomial-in-time
dependent evolution equations. Graded Lie algebras, especially Virasoro
algebras, are used to construct nonlinear variable-coefficient evolution
equations, both in 1+1 dimensions and in 2+1 dimensions, which possess
higher-degree polynomial-in-time dependent symmetries. The theory also provides
a kind of new realisation of graded Lie algebras. Some illustrative examples
are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge
Extension of Hereditary Symmetry Operators
Two models of candidates for hereditary symmetry operators are proposed and
thus many nonlinear systems of evolution equations possessing infinitely many
commutative symmetries may be generated. Some concrete structures of hereditary
symmetry operators are carefully analyzed on the base of the resulting general
conditions and several corresponding nonlinear systems are explicitly given out
as illustrative examples.Comment: 13 pages, LaTe
A refined invariant subspace method and applications to evolution equations
The invariant subspace method is refined to present more unity and more
diversity of exact solutions to evolution equations. The key idea is to take
subspaces of solutions to linear ordinary differential equations as invariant
subspaces that evolution equations admit. A two-component nonlinear system of
dissipative equations was analyzed to shed light on the resulting theory, and
two concrete examples are given to find invariant subspaces associated with
2nd-order and 3rd-order linear ordinary differential equations and their
corresponding exact solutions with generalized separated variables.Comment: 16 page
Mark 3 interactive data analysis system
The interactive data analysis system, a major subset of the total Mark 3 very long baseline interferometry (VLBI) software system is described. The system consists of two major and a number of small programs. These programs provide for the scientific analysis of the observed values of delay and delay rate generated by the VLBI data reduction programs and product the geophysical and astrometric parameters which are among the ultimate products of VLBI. The two major programs are CALC and SOLVE. CALC generates the theoretical values of VLBI delay rate as well as partial derivatives based on apriori values of the geophysical and astronometric parameters. SOLVE is a least squares parameters estimation program which yields the geophysical and astrometric parameters using the observed values by the data processing system and theoretical values and partial derivatives provided by CALC. SOLVE is a highly interactive program in which the user selects the exact form of the recovered parameters and the data to be accepted into the solution
Probing CP-violating Higgs contributions in gamma-gamma -> f anti-f through fermion polarization
We discuss the use of fermion polarization for studying neutral Higgs bosons
at a photon collider. To this aim we construct polarization asymmetries which
can isolate the contribution of a Higgs boson in , , from that of the QED continuum. This can help in getting
information on the coupling in case is a CP
eigenstate. We also construct CP-violating asymmetries which can probe CP
mixing in case has indeterminate CP. Furthermore, we take the MSSM with
CP violation as an example to demonstrate the potential of these asymmetries in
a numerical analysis. We find that these asymmetries are sensitive to the
presence of a Higgs boson as well as its CP properties over a wide range of
MSSM parameters. In particular, the method suggested can cover the region where
a light Higgs boson may have been missed by LEP due to CP violation in the
Higgs sector, and may be missed as well at the LHC.Comment: 14 pages, 14 figures, typeset in revtex4. Version which has appeared
in Physical Review D; typos in two references correcte
Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy
Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different
from the original ones. Binary nonlinearization procedure corresponding to the
Bargmann symmetry constraint is carried out for those Lax pairs. The proposed
Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of
commutative, finite dimensional integrable Hamiltonian systems in the Liouville
sense, which also provides us with new examples of finite dimensional
integrable Hamiltonian systems. A sort of involutive solutions to the
Kaup-Newell hierarchy are exhibited through the obtained finite dimensional
integrable systems and the general involutive system engendered by binary
nonlinearization is reduced to a specific involutive system generated by
mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento
Distribution of the second virial coefficients of globular proteins
George and Wilson [Acta. Cryst. D 50, 361 (1994)] looked at the distribution
of values of the second virial coefficient of globular proteins, under the
conditions at which they crystallise. They found the values to lie within a
fairly narrow range. We have defined a simple model of a generic globular
protein. We then generate a set of proteins by picking values for the
parameters of the model from a probability distribution. At fixed solubility,
this set of proteins is found to have values of the second virial coefficient
that fall within a fairly narrow range. The shape of the probability
distribution of the second virial coefficient is Gaussian because the second
virial coefficient is a sum of contributions from different patches on the
protein surface.Comment: 5 pages, including 3 figure
Interplay between single particle coherence and kinetic energy driven superconductivity in doped cuprates
Within the kinetic energy driven superconducting mechanism, the interplay
between the single particle coherence and superconducting instability in doped
cuprates is studied. The superconducting transition temperature increases with
increasing doping in the underdoped regime, and reaches a maximum in the
optimal doping, then decreases in the overdoped regime, however, the values of
this superconducting transition temperature in the whole superconducting range
are suppressed to low temperature due to the single particle coherence. Within
this superconducting mechanism, we calculate the dynamical spin structure
factor of cuprate superconductors, and reproduce all main features of inelastic
neutron scattering experiments in the superconducting-state.Comment: 7 pages, 3 figures, typo correcte
Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress
It has been known for about sixty years that proton and heavy ion therapy is
a very powerful radiation procedure for treating tumours. It has an innate
ability to irradiate tumours with greater doses and spatial selectivity
compared with electron and photon therapy and hence is a tissue sparing
procedure. For more than twenty years powerful lasers have generated high
energy beams of protons and heavy ions and hence it has been frequently
speculated that lasers could be used as an alternative to RF accelerators to
produce the particle beams necessary for cancer therapy. The present paper
reviews the progress made towards laser driven hadron cancer therapy and what
has still to be accomplished to realise its inherent enormous potential.Comment: 40 pages, 24 figure
- …