31 research outputs found

    Cities lead on climate change

    Get PDF

    Cities lead on climate change

    Full text link

    Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction

    Get PDF
    Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe

    CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales

    Get PDF
    This work was supported by NERC Standard Grant NE/N003861/1 to J.W.B.R. and L.F.R., a NOAA Climate and Global Change VSP Fellowship to J.W.B.R, NERC Standard Grant NE/M004619/1 to AB and JWBR, a NERC Strategic Environmental Science Capital Grant to A.B. and J.W.B.R., Marie Curie Career Integration Grant CIG14-631752 to AB, an ERC consolidator grant to L.F.R., NSF grant OCE-1503129 to J.F.A., and NERC studentships to B.T. and E.L.The cause of changes in atmospheric carbon dioxide (CO2) during the recent ice ages is yet to be fully explained. Most mechanisms for glacial–interglacial CO2 change have centred on carbon exchange with the deep ocean, owing to its large size and relatively rapid exchange with the atmosphere1. The Southern Ocean is thought to have a key role in this exchange, as much of the deep ocean is ventilated to the atmosphere in this region2. However, it is difficult to reconstruct changes in deep Southern Ocean carbon storage, so few direct tests of this hypothesis have been carried out. Here we present deep-sea coral boron isotope data that track the pH—and thus the CO2 chemistry—of the deep Southern Ocean over the past forty thousand years. At sites closest to the Antarctic continental margin, and most influenced by the deep southern waters that form the ocean’s lower overturning cell, we find a close relationship between ocean pH and atmospheric CO2: during intervals of low CO2, ocean pH is low, reflecting enhanced ocean carbon storage; and during intervals of rising CO2, ocean pH rises, reflecting loss of carbon from the ocean to the atmosphere. Correspondingly, at shallower sites we find rapid (millennial- to centennial-scale) decreases in pH during abrupt increases in CO2, reflecting the rapid transfer of carbon from the deep ocean to the upper ocean and atmosphere. Our findings confirm the importance of the deep Southern Ocean in ice-age CO2 change, and show that deep-ocean CO2 release can occur as a dynamic feedback to rapid climate change on centennial timescales.PostprintPeer reviewe

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Tropical ties

    No full text

    When carbon escaped from the sea

    No full text

    Push from the Pacific

    No full text
    Enhanced upwelling and CO2 degassing from the subpolar North Paci c during a warm event 14,000 years ago may have helped keep atmospheric CO2 levels high enough to propel the Earth out of the last ice age
    corecore