1,114 research outputs found

    Path relinking for the vertex separator problem

    Get PDF
    This paper presents the first population-based path relinking algorithm for solving the NP-hard vertex separator problem in graphs. The proposed algorithm employs a dedicated relinking procedure to generate intermediate solutions between an initiating solution and a guiding solution taken from a reference set of elite solutions (population) and uses a fast tabu search procedure to improve some selected intermediate solutions. Special care is taken to ensure the diversity of the reference set. Dedicated data structures based on bucket sorting are employed to ensure a high computational efficiency. The proposed algorithm is assessed on four sets of 365 benchmark instances with up to 20,000 vertices, and shows highly comparative results compared to the state-of-the-art methods in the literature. Specifically, we report improved best solutions (new upper bounds) for 67 instances which can serve as reference values for assessment of other algorithms for the problem

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure

    Electrochemical capacitance of a leaky nano-capacitor

    Get PDF
    We report a detailed theoretical investigation on electrochemical capacitance of a nanoscale capacitor where there is a DC coupling between the two conductors. For this ``leaky'' quantum capacitor, we have derived general analytic expressions of the linear and second order nonlinear electrochemical capacitance within a first principles quantum theory in the discrete potential approximation. Linear and nonlinear capacitance coefficients are also derived in a self-consistent manner without the latter approximation and the self-consistent analysis is suitable for numerical calculations. At linear order, the full quantum formula improves the semiclassical analysis in the tunneling regime. At nonlinear order which has not been studied before for leaky capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge show interesting behavior. Our theory allows the investigation of crossover of capacitance from a full quantum to classical regimes as the distance between the two conductors is changed

    Fluctuation-dissipation relationship in chaotic dynamics

    Full text link
    We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure

    Four Light Neutrinos in Singular Seesaw Mechanism with Abelian Flavor Symmetry

    Get PDF
    The four light neutrino scenario, which explains the atmosphere, solar and LSND neutrino experiments, is studied in the framework of the seesaw mechanism. By taking both the Dirac and Majorana mass matrix of neutrinos to be singular, the four neutrino mass spectrum consisting of two almost degenerate pairs separated by a mass gap 1\sim 1 eV is naturally generated. Moreover the right-handed neutrino Majorana mass can be at 1014\sim 10^{14} GeV scale unlike in the usual singular seesaw mechanism. Abelian flavor symmetry is used to produce the required neutrino mass pattern. A specific example of the flavor charge assignment is provided to show that maximal mixings between the νμντ\nu_\mu-\nu_\tau and νeνs\nu_e-\nu_s are respectively attributed to the atmosphere and solar neutrino anomalies while small mixing between two pairs to the LSND results. The implication in the other fermion masses is also discussed.Comment: Firnal version to appear in PR

    Primordial nucleosynthesis with a varying fine structure constant: An improved estimate

    Full text link
    We compute primordial light-element abundances for cases with fine structure constant alpha different from the present value, including many sources of alpha dependence neglected in previous calculations. Specifically, we consider contributions arising from Coulomb barrier penetration, photon coupling to nuclear currents, and the electromagnetic components of nuclear masses. We find the primordial abundances to depend more weakly on alpha than previously estimated, by up to a factor of 2 in the case of ^7Li. We discuss the constraints on variations in alpha from the individual abundance measurements and the uncertainties affecting these constraints. While the present best measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise by adjusting alpha and the universal baryon density, no value of alpha allows all three to be accommodated simultaneously without consideration of systematic error. The combination of measured abundances with observations of acoustic peaks in the cosmic microwave background favors no change in alpha within the uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR
    corecore