1,898 research outputs found

    Pion-photon and photon-pion transition form factors in light-cone formalism

    Full text link
    We derive the minimal Fock-state expansions of the pion and the photon wave functions in light-cone formalism, then we calculate the pion-photon and the photon-pion transition form factors of Îłâˆ—Ï€0→γ\gamma ^{\ast}\pi ^{0}\to \gamma and Îłâˆ—Îłâ†’Ï€0\gamma ^{\ast}\gamma \to \pi ^{0} processes by employing these quark-antiquark wave functions of the pion and the photon. We find that our calculation for the Îłâˆ—Îłâ†’Ï€0\gamma ^{\ast}\gamma \to \pi ^{0} transition form factor agrees with the experimental data at low and moderately high energy scale. Moreover, the physical differences and inherent connections between the transition form factors of Îłâˆ—Ï€0→γ\gamma ^{\ast}\pi ^{0}\to \gamma and Îłâˆ—Îłâ†’Ï€0 \gamma ^{\ast}\gamma \to \pi ^{0} have been illustrated, which indicate that these two physical processes are intrinsically related. In addition, we also discuss the π0→γγ\pi ^{0}\to \gamma \gamma form factor and the decay width Γ(Ï€â†’ÎłÎł) \mathit{\Gamma}(\pi \to \gamma \gamma) at Q2=0Q^{2}=0.Comment: 20 pages, 2 figure

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays Bc→Ds(1968)ℓℓˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and Bc→Ds∗(2317)ℓℓˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    A new chiral ligand: 2,6-bis 4(S)-isopropyl-1-phenyl-4,5-dihydro-1H-imidazol-2-yl pyridine

    Get PDF
    The title compound, C29H33N5, is a new chiral bis(imidazolyl) pyridine derivative with a skeleton similar to the bis(oxazolyl) pyridine derivatives, which have been extensively used as ligands in various asymmetric catalytic reactions. The most prominent feature of the present compound is the considerable sp(2) character of N atoms of the imidazoline rings. The substituents at the Nsp(2) atoms can provide a means for tuning the electronic and conformational properties of the compound

    A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion

    Get PDF
    AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics

    A nonlinear hydrodynamical approach to granular materials

    Full text link
    We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes the formation of a sand pile from a homogeneous distribution of material under gravity, and then discuss a simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic angle of repose.Comment: 17 pages, 14 figures, RevTeX4; minor changes to wording and some additional discussion. Accepted by Phys. Rev.

    Self-consistent description of nuclear compressional modes

    Get PDF
    Isoscalar monopole and dipole compressional modes are computed for a variety of closed-shell nuclei in a relativistic random-phase approximation to three different parametrizations of the Walecka model with scalar self-interactions. Particular emphasis is placed on the role of self-consistency which by itself, and with little else, guarantees the decoupling of the spurious isoscalar-dipole strength from the physical response and the conservation of the vector current. A powerful new relation is introduced to quantify the violation of the vector current in terms of various ground-state form-factors. For the isoscalar-dipole mode two distinct regions are clearly identified: (i) a high-energy component that is sensitive to the size of the nucleus and scales with the compressibility of the model and (ii) a low-energy component that is insensitivity to the nuclear compressibility. A fairly good description of both compressional modes is obtained by using a ``soft'' parametrization having a compression modulus of K=224 MeV.Comment: 28 pages and 10 figures; submitted to PR

    Energy Independent Solution to the Solar Neutrino Anomaly including the SNO data

    Get PDF
    The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the energy independent solution -- corresponding to near-maximal mixing. All the three favour a mild upward renormalisation of the Cl rate. A mild downward shift of the BB neutrino flux is favoured by the energy independent and to a lesser extent the LOW solution, but not by LMA. Comparison with the ratio of SK elastic and SNO charged current scattering rates favours the LMA over the other two solutions, but by no more than 1.5σ1.5\sigma.Comment: 18 pages, latex, 3 figure

    Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    Full text link
    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity- factor (K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1 3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor (K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 C to 800 C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time dependent FCP rates of INCONEL 617 and HAYNES 230

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment

    Full text link
    To explain both the OPERA experiment and all the known phenomenological constraints/observations on Lorentz violation, the Background Dependent Lorentz Violation (BDLV) has been proposed. We study the BDLV in a model independent way, and conjecture that there may exist a "Dream Special Relativity Theory", where all the Standard Model (SM) particles can be subluminal due to the background effects. Assuming that the Lorentz violation on the Earth is much larger than those on the interstellar scale, we automatically escape all the astrophysical constraints on Lorentz violation. For the BDLV from the effective field theory, we present a simple model and discuss the possible solutions to the theoretical challenges of the OPERA experiment such as the Bremsstrahlung effects for muon neutrinos and the pion decays. Also, we address the Lorentz violation constraints from the LEP and KamLAMD experiments. For the BDLV from the Type IIB string theory with D3-branes and D7-branes, we point out that the D3-branes are flavour blind, and all the SM particles are the conventional particles as in the traditional SM when they do not interact with the D3-branes. Thus, we not only can naturally avoid all the known phenomenological constraints on Lorentz violation, but also can naturally explain all the theoretical challenges. Interestingly, the energy dependent photon velocities may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde
    • 

    corecore