318,871 research outputs found
Reexamining the "finite-size" effects in isobaric yield ratios using a statistical abrasion-ablation model
The "finite-size" effects in the isobaric yield ratio (IYR), which are shown
in the standard grand-canonical and canonical statistical ensembles (SGC/CSE)
method, is claimed to prevent obtaining the actual values of physical
parameters. The conclusion of SGC/CSE maybe questionable for neutron-rich
nucleus induced reaction. To investigate whether the IYR has "finite-size"
effects, the IYR for the mirror nuclei [IYR(m)] are reexamined using a modified
statistical abrasion-ablation (SAA) model. It is found when the projectile is
not so neutron-rich, the IYR(m) depends on the isospin of projectile, but the
size dependence can not be excluded. In reactions induced by the very
neutron-rich projectiles, contrary results to those of the SGC/CSE models are
obtained, i.e., the dependence of the IYR(m) on the size and the isospin of the
projectile is weakened and disappears both in the SAA and the experimental
results.Comment: 5 pages and 4 figure
Gluon GPDs and Exclusive Photoproduction of a Quarkonium in Forward Region
Forward photoproduction of can be used to extract Generalized Parton
Distributions(GPD's) of gluons. We analyze the process at twist-3 level and
study relevant classifications of twist-3 gluon GPD's. At leading power or
twist-2 level the produced is transversely polarized. We find that at
twist-3 the produced is longitudinally polarized. Our study shows that
in high energy limit the twist-3 amplitude is only suppressed by the inverse
power of the heavy quark mass relatively to the twist-2 amplitude. This
indicates that the power correction to the cross-section of unpolarized
can have a sizeable effect. We have also derived the amplitude of the
production of at twist-3, but the result contains end-point
singularities. The production of other quarkonia has been briefly discussed.Comment: Discussions of results are adde
Deformations of Closed Strings and Topological Open Membranes
We study deformations of topological closed strings. A well-known example is
the perturbation of a topological closed string by itself, where the
associative OPE product is deformed, and which is governed by the WDVV
equations. Our main interest will be closed strings that arise as the boundary
theory for topological open membranes, where the boundary string is deformed by
the bulk membrane operators. The main example is the topological open membrane
theory with a nonzero 3-form field in the bulk. In this case the Lie bracket of
the current algebra is deformed, leading in general to a correction of the
Jacobi identity. We identify these deformations in terms of deformation theory.
To this end we describe the deformation of the algebraic structure of the
closed string, given by the BRST operator, the associative product and the Lie
bracket. Quite remarkably, we find that there are three classes of deformations
for the closed string, two of which are exemplified by the WDVV theory and the
topological open membrane. The third class remains largely mysterious, as we
have no explicit example.Comment: 50 pages, LaTeX; V2: minor changes, 2 references added, V3: typos
corrected, signs added, modified discussion on higher correlator
Approaching the ground states of the random maximum two-satisfiability problem by a greedy single-spin flipping process
In this brief report we explore the energy landscapes of two spin glass
models using a greedy single-spin flipping process, {\tt Gmax}. The
ground-state energy density of the random maximum two-satisfiability problem is
efficiently approached by {\tt Gmax}. The achieved energy density
decreases with the evolution time as
with a small prefactor and a scaling coefficient , indicating an
energy landscape with deep and rugged funnel-shape regions. For the
Viana-Bray spin glass model, however, the greedy single-spin dynamics quickly
gets trapped to a local minimal region of the energy landscape.Comment: 5 pages with 4 figures included. Accepted for publication in Physical
Review E as a brief repor
Baryon and Lepton Number Violation with Scalar Bilinears
We consider all possible scalar bilinears, which couple to two fermions of
the standard model. The various baryon and lepton number violating couplings
allowed by these exotic scalars are studied. We then discuss which ones are
constrained by limits on proton decay (to a lepton and a meson as well as to
three leptons), neutron-antineutron oscillations, and neutrinoless double beta
decay.Comment: 11 pages latex fil
Diagnosing space telescope misalignment and jitter using stellar images
Accurate knowledge of the telescope's point spread function (PSF) is
essential for the weak gravitational lensing measurements that hold great
promise for cosmological constraints. For space telescopes, the PSF may vary
with time due to thermal drifts in the telescope structure, and/or due to
jitter in the spacecraft pointing (ground-based telescopes have additional
sources of variation). We describe and simulate a procedure for using the
images of the stars in each exposure to determine the misalignment and jitter
parameters, and reconstruct the PSF at any point in that exposure's field of
view. The simulation uses the design of the SNAP (http://snap.lbl.gov)
telescope. Stellar-image data in a typical exposure determines secondary-mirror
positions as precisely as . The PSF ellipticities and size, which
are the quantities of interest for weak lensing are determined to and accuracies respectively in each exposure,
sufficient to meet weak-lensing requirements. We show that, for the case of a
space telescope, the PSF estimation errors scale inversely with the square root
of the total number of photons collected from all the usable stars in the
exposure.Comment: 20 pages, 6 figs, submitted to PAS
- …
