269 research outputs found

    Augmenting Black-box LLMs with Medical Textbooks for Clinical Question Answering

    Full text link
    Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation

    Large Language Model Is Not a Good Few-shot Information Extractor, but a Good Reranker for Hard Samples!

    Full text link
    Large Language Models (LLMs) have made remarkable strides in various tasks. Whether LLMs are competitive few-shot solvers for information extraction (IE) tasks, however, remains an open problem. In this work, we aim to provide a thorough answer to this question. Through extensive experiments on nine datasets across four IE tasks, we demonstrate that current advanced LLMs consistently exhibit inferior performance, higher latency, and increased budget requirements compared to fine-tuned SLMs under most settings. Therefore, we conclude that LLMs are not effective few-shot information extractors in general. Nonetheless, we illustrate that with appropriate prompting strategies, LLMs can effectively complement SLMs and tackle challenging samples that SLMs struggle with. And moreover, we propose an adaptive filter-then-rerank paradigm to combine the strengths of LLMs and SLMs. In this paradigm, SLMs serve as filters and LLMs serve as rerankers. By prompting LLMs to rerank a small portion of difficult samples identified by SLMs, our preliminary system consistently achieves promising improvements (2.4% F1-gain on average) on various IE tasks, with an acceptable time and cost investment.Comment: Accepted by EMNLP 2023 Finding

    Thermodynamic properties of higher-dimensional dS black holes in dRGT massive gravity

    Full text link
    On the basis of the state parameter of de Sitter space-time satisfying the first law of thermodynamics,we can derive some effective thermodynamic quantities.When the temperature of the black hole horizon is equal to that of the cosmological horizon, we think that the effective temperature of the space-time should have the same value. Using this condition, we obtain a differential equation of the entropy of the de Sitter black hole in the higherdimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity. Solving the differential equation, we obtain the corrected entropy and effective thermodynamic quantities of the de Sitter black hole. The results show that for multiparameter black holes, the entropy satisfied differential equation is invariable with different independent state parameters. Therefore, the entropy of higher-dimensional dS black holes in dRGT massive gravity is only a function of the position of the black hole horizon, and is independent of other state parameters. It is consistent with the corresponding entropy of the black hole horizon and the cosmological horizon. The thermodynamic quantities of self-consistent de Sitter spacetime are given theoretically, and the equivalent thermodynamic quantities have the second-order phase transformation similar to AdS black hole, but unlike AdS black hole, the equivalent temperature of de Sitter space-time has a maximum value. By satisfying the requirement of thermodynamic equilibrium and stability of space-time, the conditions for the existence of dS black holes in the universe are obtained.Comment: 11 pages, 6 figure

    Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules

    Get PDF
    In this study Ginkgo biloba leaves (GBL) decoction and commercial capsules were digested using an in vitro model. Thirty-six active compounds were identified and quantified by HPLC-ESI-MS analysis based on the MS/MS patterns (precursor ions and product ions) and retention times, in comparison with reference standards. Most compounds in GBL showed a significant decrease during intestinal digestion, with an exception of vanillic acid and biflavonoids. Bioaccessibility values of chemical compositions varied between decoction and capsules samples. Also, significant reductions of total flavonoids and total phenolic content was observed after in vitro digestion. Both, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity decreased after gastric digestion, but increased during intestinal digestion. Nevertheless, different behaviour was observed in reducing antioxidant power (FRAP) assay. Compared to the pH of digestion, the influence of digestive enzymes on the chemical composition and antioxidant activity of GBL was relatively minor. Overall, these results may help provide a valid foundation for further investigations on bioactive compounds and the pharmacodynamics of GBL

    Power-Electronics-Based Mission Profile Emulation and Test for Electric Machine Drive System:Concepts, Features, and Challenges

    Get PDF

    Learning To Teach Large Language Models Logical Reasoning

    Full text link
    Large language models (LLMs) have gained enormous attention from both academia and industry, due to their exceptional ability in language generation and extremely powerful generalization. However, current LLMs still output unreliable content in practical reasoning tasks due to their inherent issues (e.g., hallucination). To better disentangle this problem, in this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in logical reasoning. More in detail, we first investigate the deficiency of LLMs in logical reasoning on different tasks, including event relation extraction and deductive reasoning. Our study demonstrates that LLMs are not good reasoners in solving tasks with rigorous reasoning and will produce counterfactual answers, which require us to iteratively refine. Therefore, we comprehensively explore different strategies to endow LLMs with logical reasoning ability, and thus enable them to generate more logically consistent answers across different scenarios. Based on our approach, we also contribute a synthesized dataset (LLM-LR) involving multi-hop reasoning for evaluation and pre-training. Extensive quantitative and qualitative analyses on different tasks also validate the effectiveness and necessity of teaching LLMs with logic and provide insights for solving practical tasks with LLMs in future work

    Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis

    Get PDF
    The aim of the present study was to develop an inhibitor-tolerant strain of Scheffersomyces stipitis and establish an efficient ethanol fermentation process for cost-effective ethanol production from lignocellulosic biomass. By a strategy of three successive rounds of UV mutagenesis following adaptation, we isolated a S. stipitis mutant with improved tolerance against ethanol and inhibitors in the form of acetic acid, furfural and vanillin. The mutant strain exhibited excellent ethanol fermentation performance; both the xylose and glucose consumption rate and ethanol productivity were almost two times higher than the parental strain in batch fermentation. To overcome the issue of product inhibition and carbon catabolite repression (CCR) effect, the membrane integrated continuous fermentation system was employed. The maximum ethanol titer of 43.2 g l−1 and productivity of 2.16 g l−1 h−1 was achieved at a dilution rate of 0.05 h−1, higher than the relevant studies ever reported. These results suggested the novel process of cell recycling continuous fermentation using S. stipitis mutant has great potential for commercial ethanol production from lignocelluloses-based biomass

    Microspheres Assembled from Chitosan‐Graft‐Poly(lactic acid) Micelle‐Like Core–Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122426/1/mabi201600020-sup-0001-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122426/2/mabi201600020.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122426/3/mabi201600020_am.pd

    Phase transition and entropic force of de Sitter black hole in massive gravity

    Full text link
    It is well known that de Sitter(dS) black holes generally have a black hole horizon and a cosmological horizon, both of which have Hawking radiation. But the radiation temperature of the two horizons is generally different, so dS black holes do not meet the requirements of thermal equilibrium stability, which brings certain difficulties to the study of the thermodynamic characteristics of black holes. In this paper, dS black hole is regarded as a thermodynamic system, and the effective thermodynamic quantities of the system are obtained. The influence of various state parameters on the effective thermodynamic quantities in the massive gravity space-time is discussed. The condition of the phase transition of the de Sitter black hole in massive gravity space-time is given. We consider that the total entropy of the dS black hole is the sum of the corresponding entropy of the two horizons plus an extra term from the correlation of the two horizons. By comparing the entropic force of interaction between black hole horizon and the cosmological horizon with Lennard-Jones force between two particles, we find that the change rule of entropic force between the two system is surprisingly the same. The research will help us to explore the real reason of accelerating expansion of the universe.Comment: 14 pages,11 figure

    Parameter Setting Strategy for the Controller of the DFIG Wind Turbine Considering the Small-Signal Stability of Power Grids

    Get PDF
    Due to the increasing penetration of the wind generation, the stability, especially the small-signal stability, of the power grid is much related to it. Currently, few studies considered the impact of the parameter settings of the wind turbine controller on the small-signal stability of the grid under the full range of wind conditions. In this paper, we propose a framework for deriving a set of controller parameters by interiorizing their impact on the power system stability, based on an analytic model of a 15th-order single DFIG-infinite grid connection under all wind speeds. The study results on a real wind turbine show that the controller parameters optimized for a specific wind speed may not feasible for other operational conditions yet the proposed framework can obtain a set of parameters guaranteeing the power system stability under all wind speeds
    corecore