56 research outputs found

    Free electron emission in vacuum assisted by photonic time crystals

    Full text link
    The Cerenkov radiation and the Smith-Purcell effect state that free electron emission occurs exclusively in dielectrics when the velocity of the particles exceeds the speed of light in the medium or in the vicinity of periodic gratings close to each other within a vacuum. We demonstrate that free electrons in a vacuum can also emit highly directional monochromatic waves when they are in close proximity to a medium that is periodically modulated temporally, suggesting the existence of temporal Smith-Purcell effect. The momentum band gaps of time-varying media, such as photonic time crystals (PTCs), create new pathways for the injection of external energy, allowing the frequency, intensity, and spatial distribution of the electromagnetic fields to be controlled. Moreover, the PTC substrate enables the conversion of localized evanescent fields into amplified, highly directional propagating plane waves that are only sensitive to the velocity of particles and the modulation frequency, which allows us to observe and utilize Cerenkov-like radiation in free space. Our work exhibits significant opportunities for the utilization of time-varying structures in various fields, including particle identification, ultraweak signal detection, and improved radiation source design

    Research on the Influence of Switching Frequency on Low-Frequency Oscillation in the Voltage-Controlled Buck-Boost Converter

    Get PDF
    The influence of switching frequency on the low-frequency oscillation in the voltage-controlled buck-boost converter is studied in this paper. Firstly, the mathematical model of this system is derived. And then, a glimpse at the influence of switching frequency on the low-frequency oscillation in this system by MATLAB/Simulink is given. The improved averaged model of the system is established, and the corresponding theoretical analysis is presented. It is found that the switching frequency has an important influence on the low-frequency oscillation in the system, that is, the low-frequency oscillation is easy to occur when the switching frequency is low. Finally, the effectiveness of the improved averaged model and the theoretical analysis are confirmed by circuit experiment

    Analysis and design of transition radiation in layered uniaxial crystals using Tandem neural networks

    Full text link
    With the flourishing development of nanophotonics, Cherenkov radiation pattern can be designed to achieve superior performance in particle detection by fine-tuning the properties of metamaterials such as photonic crystals (PCs) surrounding the swift particle. However, the radiation pattern can be sensitive to the geometry and material properties of PCs, such as periodicity, unit thickness, and dielectric fraction, making direct analysis and inverse design difficult. In this article, we propose a systematic method to analyze and design PC-based transition radiation, which is assisted by deep learning neural networks. By matching boundary conditions at the interfaces, Cherenkov-like radiation of multilayered structures can be resolved analytically using the cascading scattering matrix method, despite the optical axes not being aligned with the swift electron trajectory. Once well trained, forward deep learning neural networks can be utilized to predict the radiation pattern without further direct electromagnetic simulations; moreover, Tandem neural networks have been proposed to inversely design the geometry and/or material properties for desired Cherenkov radiation pattern. Our proposal demonstrates a promising strategy for dealing with layered-medium-based Cherenkov radiation detectors, and it can be extended for other emerging metamaterials, such as photonic time crystals

    Average and Small Signal Modeling of Negative-Output KY Boost Converter in CCM Operation

    Get PDF
    Negative-output KY Boost converter, which can obtain the negative output voltage and could be driven easily, is a good topology to overcome traditional Boost and Buck-Boost converters and it is believed that this converter will be widely used in engineering applications in the future. In this study, by using the averaging method and geometrical technique, the average and small signal model of the negative-output KY Boost converter are established. The DC equilibrium point and transfer functions of the system are derived and analyzed. Finally, the effectiveness of the established model and the correctness of the theoretical analysis are confirmed by the circuit experiment

    Space-Time Fresnel Prism

    Full text link
    Space-time modulation-based metamaterials have recently spurred considerable interest, owing to the fundamental addition of the time dimension to the medium parameters, and resulting novel properties and potential applications. However, the implementation of most related structures -- e.g., involving step, slab or gradient discontinuities -- has been hindered by the impossible requirement of infinitely or prohibitively large device sizes. We provide here a solution to this issue, consisting in a space-time transposition of the conventional Fresnel prism, whereby a copy of the target modulation is periodically re-injected at the input of a Fresnel-reduced finite structure, so as to provide the same anharmonic and nonreciprocal frequency conversion as the target space-time interface in the case of a modulation step. This concept, which may readily extend to slab or gradient modulations, as well as accelerated profiles for space-time chirping operations, may pave the way for the practical development of a wide range of novel microwave and optical space-time systems

    Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journa

    Wireless Real-Time Capacitance Readout Based on Perturbed Nonlinear Parity-Time Symmetry

    Full text link
    In this article, we report a vector-network-analyzer-free and real-time LC wireless capacitance readout system based on perturbed nonlinear parity-time (PT) symmetry. The system is composed of two inductively coupled reader-sensor parallel RLC resonators with gain and loss respectively. By searching for the real mode that requires the minimum saturation gain, the steady-state frequency evolution as a function of the sensor capacitance perturbation is analytically deduced. The proposed system can work in different modes by setting different perturbation point. In particular, at the exceptional point of PT symmetry, the system exhibits high sensitivity. Experimental demonstrations revealed the viability of the proposed readout mechanism by measuring the steady-state frequency of the reader resonator in response to the change of trimmer capacitor on the sensor side. Our findings could impact many emerging applications such as implantable medical device for health monitoring, parameter detection in harsh environment and sealed food packages, etc
    corecore