90 research outputs found

    A Deep Learning Technique to Control the Non-linear Dynamics of a Gravitational-wave Interferometer

    Full text link
    In this work we developed a deep learning technique that successfully solves a non-linear dynamic control problem. Instead of directly tackling the control problem, we combined methods in probabilistic neural networks and a Kalman-Filter-inspired model to build a non-linear state estimator for the system. We then used the estimated states to implement a trivial controller for the now fully observable system. We applied this technique to a crucial non-linear control problem that arises in the operation of the LIGO system, an interferometric gravitational-wave observatory. We demonstrated in simulation that our approach can learn from data to estimate the state of the system, allowing a successful control of the interferometer's mirror . We also developed a computationally efficient model that can run in real time at high sampling rate on a single modern CPU core, one of the key requirements for the implementation of our solution in the LIGO digital control system. We believe these techniques could be used to help tackle similar non-linear control problems in other applications

    Automated pectoral muscle identification on MLOâ view mammograms: Comparison of deep neural network to conventional computer vision

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149204/1/mp13451_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149204/2/mp13451.pd

    Identification and modulation of electronic band structures of single-phase B-(AlxGa1-x)2O3 alloys grown by laser molecular beam epitaxy

    Get PDF
    Understanding the band structure evolution of (AlxGa1x)2O3 alloys is of fundamental importance for developing Ga2O3-based power electronic devices and vacuum ultraviolet super-radiation hard detectors. Here, we report on the bandgap engineering of b-(AlxGa1x)2O3 thin films and the identification of compositionally dependent electronic band structures by a combination of absorption spectra analyses and density functional theory calculations. Single-monoclinic b-phase (AlxGa1x)2O3 (0 x 0.54) films with a preferred (201) orientation were grown by laser molecular beam epitaxy with tunable bandgap ranging from 4.5 to 5.5 eV. The excellent fitting of absorption spectra by the relation of (ah) 1/2 / (h-E) unambiguously identifies that b-(AlxGa1x)2O3 alloys are indirect bandgap semiconductors. Theoretical calculations predict that the indirect nature of b-(AlxGa1x)2O3 becomes more pronounced with increased Al composition due to the increased eigenvalue energy gap between M and U points in the valence band. The experimentally determined indirect bandgap exhibits almost a linear relationship with Al composition, which is consistent with the theoretical calculation and indicates a small bowing effect and a good miscibility. The identification and modulation of (AlxGa1x)2O3 band structures allows rational design of ultra-wide bandgap oxide heterostructures for the applications in power electronics and solar-blind or X-ray detection.This research was supported by the National Key Research and Development Project (Grant No. 2017YFB0403003), the National Natural Science Foundation of China (Grant Nos. 61774081, 61322403, and 11227904), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20130013 and BK20161401), the Six Talent Peaks Project in Jiangsu Province (2014XXRJ001), the Fundamental Research Funds for the Central Universities (021014380093 and 021014380085) and the Australian Research Council. The computational part of this research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government under the NCRIS program

    Knowledge and attitudes of healthcare workers in Chinese intensive care units regarding 2009 H1N1 influenza pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To describe the knowledge and attitudes of critical care clinicians during the 2009 H1N1 influenza pandemic.</p> <p>Methods</p> <p>A survey conducted in 21 intensive care units in 17 provinces in China.</p> <p>Results</p> <p>Out of 733 questionnaires distributed, 695 were completed. Three hundred and fifty-six respondents (51.2%) reported their experience of caring for H1N1 patients. Despite the fact that 88.5% of all respondents ultimately finished an H1N1 training program, only 41.9% admitted that they had the knowledge of 2009 H1N1 influenza. A total of 572 respondents (82.3%) expressed willingness to care for H1N1 patients. Independent variables associated with increasing likelihood to care for patients in the logistic regression analysis were physicians or nurses rather than other professionals (odds ratio 4.056 and 3.235, p = 0.002 and 0.007, respectively), knowledge training prior to patient care (odds ratio 1.531, p = 0.044), and the confidence to know how to protect themselves and their patients (odds ratio 2.109, p = 0.001).</p> <p>Conclusion</p> <p>Critical care clinicians reported poor knowledge of H1N1 influenza, even though most finished a relevant knowledge training program. Implementation of appropriate education program might improve compliance to infection control measures, and willingness to work in a pandemic.</p

    Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis

    Get PDF
    Introduction: Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated. Methods: The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor beta 1 (TGF-beta 1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored. Results: In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-beta 1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-beta 1 and NO and UC-MSCs could promote the expansion of CD4(+) Foxp3(+) regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-alpha, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA. Conclusions: In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000287517000020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701RheumatologySCI(E)PubMed64ARTICLE6R2101

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    Identification of Genes and Pathways Linking Cancer Metabolism to Cell Surface Dynamics through Protein N-glycosylation

    No full text
    N-glycosylation is a co-translational modification that covalently attaches oligosaccharide to and regulates proper folding, trafficking, and surface residency of secreted proteins. MGAT5 encodes a glycosyltransferase that synthesizes β1,6GlcNAc-branched N-glycans in medial Golgi. MGAT5 is frequently up-regulated in and associated with the progression of multiple types of human carcinomas. In order to identify Mgat5 interacting genes and signaling pathways, immortalized mouse embryonic fibroblast (MEF) cell lines that are Mgat5 wild-type and null were established on p53 null genetic background. Pooled lentiviral shRNA drop-out screens revealed that mTOR pathway was essential in the wild-type MEFs, whereas signaling dependency shifts to RAS-MEK-ERK pathway was observed in the null cells. Metabolite profiling of the MEFs and human cell lines with MGAT5 knock-down showed drastic changes in tricarboxylic acid cycle metabolites and amino acids upon MGAT5 disruption. Together, these approaches permitted a global survey of genetic and metabolic changes that occur when MGAT5 is disturbed.M.Sc

    Developing Firmware and Algorithms for the Liquid Argon Signal Processor

    No full text
    In this report we discuss the development of various firmware and algorithms for the digital electronics of the Liquid Argon Signal Processor (LASP), which is designed to measure and reconstruct the energy deposited into the Liquid Argon Calorimeter cells. We first examine the development of firmware for PATGEN, TTCGEN, 10Gbe Base R/KR network protocols. Then we explore the development of novel machine learning algorithms for optimal energy reconstruction given the digital current signals. Lastly, we investigate various hardware tests to examine the functionality of the future electronic boards

    Research on Multi-Objective Multi-Robot Task Allocation by Lin&ndash;Kernighan&ndash;Helsgaun Guided Evolutionary Algorithms

    No full text
    Multi-robot task allocation (MRTA) and route planning are crucial for a large-scale multi-robot system. In this paper, the problem is formulated to minimize the total energy consumption and overall task completion time simultaneously, with some constraints taken into consideration. To represent a solution, a novel one-chromosome representation technique is proposed, which eases the consequent genetic operations and the construction of the cost matrix. Lin&ndash;Kernighan&ndash;Helsgaun (LKH), a highly efficient sub-tour planner, is employed to generate prophet generation beforehand as well as guide the evolutionary direction during the proceeding of multi-objective evolutionary algorithms, aiming to promote convergence of the Pareto front. Numerical experiments on the benchmark show the LKH guidance mechanism is effective for two famous multi-objective evolutionary algorithms, namely multi-objective evolutionary algorithm based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm (NSGA), of which LKH-guided NSGA exhibits the best performance on three predefined indicators, namely C-metric, HV, and Spacing, respectively. The generalization experiment on a multiple depots MRTA problem with constraints further demonstrates the effectiveness of the proposed approach for practical decision making
    corecore