117 research outputs found

    Adaptive Pattern Extraction Multi-Task Learning for Multi-Step Conversion Estimations

    Full text link
    Multi-task learning (MTL) has been successfully used in many real-world applications, which aims to simultaneously solve multiple tasks with a single model. The general idea of multi-task learning is designing kinds of global parameter sharing mechanism and task-specific feature extractor to improve the performance of all tasks. However, challenge still remains in balancing the trade-off of various tasks since model performance is sensitive to the relationships between them. Less correlated or even conflict tasks will deteriorate the performance by introducing unhelpful or negative information. Therefore, it is important to efficiently exploit and learn fine-grained feature representation corresponding to each task. In this paper, we propose an Adaptive Pattern Extraction Multi-task (APEM) framework, which is adaptive and flexible for large-scale industrial application. APEM is able to fully utilize the feature information by learning the interactions between the input feature fields and extracted corresponding tasks-specific information. We first introduce a DeepAuto Group Transformer module to automatically and efficiently enhance the feature expressivity with a modified set attention mechanism and a Squeeze-and-Excitation operation. Second, explicit Pattern Selector is introduced to further enable selectively feature representation learning by adaptive task-indicator vectors. Empirical evaluations show that APEM outperforms the state-of-the-art MTL methods on public and real-world financial services datasets. More importantly, we explore the online performance of APEM in a real industrial-level recommendation scenario.Comment: 18 pages, 9 figure

    Association of p53 rs1042522, MDM2 rs2279744, and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population.

    Get PDF
    Single nucleotide polymorphisms (SNPs) of p53 rs1042522, MDM2 rs2279744 and p21 rs1801270, all in the p53 pathway, which plays a crucial role in DNA damage and genomic instability, were reported to be associated with cancer risk and pathologic characteristics. This case-control study was designed to analyse the association between these SNPs and retinoblastoma (RB) in a Chinese Han population. These SNPs in 168 RB patients and 185 adult controls were genotyped using genomic DNA from venous blood. No significant difference was observed in allele or genotypic frequencies of these SNPs between Chinese RB patients and controls (all P > 0.05). However, the rs1042522 GC genotype showed a protective effect against RB invasion, as demonstrated by event-free survival (HR = 0.53, P = 0.007 for GC versus GG/CC). This effect was significant for patients with a lag time >1 month and no pre-enucleation treatment (P = 0.007 and P = 0.010, respectively), indicating an interaction between p53 rs1042522 and clinical characteristics, including lag time and pre-enucleation treatment status. Thus, the rs1042522 SNP may be associated with RB invasion in the Han Chinese population; however, further large and functional studies are needed to assess the validity of this association

    Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release

    Get PDF
    Thrombosis and its complications are the leading cause of death in patients with diabetes. Metformin, a first-line therapy for type 2 diabetes, is the only drug demonstrated to reduce cardiovascular complications in diabetic patients. However, whether metformin can effectively prevent thrombosis and its potential mechanism of action is unknown. Here we show, metformin prevents both venous and arterial thrombosis with no significant prolonged bleeding time by inhibiting platelet activation and extracellular mitochondrial DNA (mtDNA) release. Specifically, metformin inhibits mitochondrial complex I and thereby protects mitochondrial function, reduces activated platelet-induced mitochondrial hyperpolarization, reactive oxygen species overload and associated membrane damage. In mitochondrial function assays designed to detect amounts of extracellular mtDNA, we found that metformin prevents mtDNA release. This study also demonstrated that mtDNA induces platelet activation through a DC-SIGN dependent pathway. Metformin exemplifies a promising new class of antiplatelet agents that are highly effective at inhibiting platelet activation by decreasing the release of free mtDNA, which induces platelet activation in a DC-SIGN-dependent manner. This study has established a novel therapeutic strategy and molecular target for thrombotic diseases, especially for thrombotic complications of diabetes mellitus

    Generation of ESTs for Flowering Gene Discovery and SSR Marker Development in Upland Cotton

    Get PDF
    BACKGROUND: Upland cotton, Gossypium hirsutum L., is one of the world's most important economic crops. In the absence of the entire genomic sequence, a large number of expressed sequence tag (EST) resources of upland cotton have been generated and used in several studies. However, information about the flower development of this species is rare. METHODOLOGY/PRINCIPAL FINDINGS: To clarify the molecular mechanism of flower development in upland cotton, 22,915 high-quality ESTs were generated and assembled into 14,373 unique sequences consisting of 4,563 contigs and 9,810 singletons from a normalized and full-length cDNA library constructed from pooled RNA isolated from shoot apexes, squares, and flowers. Comparative analysis indicated that 5,352 unique sequences had no high-degree matches to the cotton public database. Functional annotation showed that several upland cotton homologs with flowering-related genes were identified in our library. The majority of these genes were specifically expressed in flowering-related tissues. Three GhSEP (G. hirsutum L. SEPALLATA) genes determining floral organ development were cloned, and quantitative real-time PCR (qRT-PCR) revealed that these genes were expressed preferentially in squares or flowers. Furthermore, 670 new putative microsatellites with flanking sequences sufficient for primer design were identified from the 645 unigenes. Twenty-five EST-simple sequence repeats were randomly selected for validation and transferability testing in 17 Gossypium species. Of these, 23 were identified as true-to-type simple sequence repeat loci and were highly transferable among Gossypium species. CONCLUSIONS/SIGNIFICANCE: A high-quality, normalized, full-length cDNA library with a total of 14,373 unique ESTs was generated to provide sequence information for gene discovery and marker development related to upland cotton flower development. These EST resources form a valuable foundation for gene expression profiling analysis, functional analysis of newly discovered genes, genetic linkage, and quantitative trait loci analysis

    A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells

    Get PDF
    Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadherin expression, and TGF-β1-up-regulated α-SMA, Collagen I, and PAI-1 expression, leading to the inhibition of EMT in primarily cultured RPMCs. Furthermore, TGF-β1 induces a bimodal JNK activation with peaks at 10 minutes and 12 hours post treatment in RPMCs. In addition, the inhibition of Smad3 activation by introducing a Smad3 mutant mitigates the TGF-β1-induced second wave, but not the first wave, of JNK1 activation in RPMCs. Moreover, the inhibition of JNK1 activation prevents the TGF-β1-induced Smad3 activation and nuclear translocation, and inhibition of the TGF-β1-induced second wave of JNK activation greatly reduced TGF-β1-induced EMT in RPMCs. These data indicate a crosstalk between the JNK1 and Samd3 pathways during the TGF-β1-induced EMT and fibrotic process in RPMCs. Therefore, our findings may provide new insights into understanding the regulation of the TGF-β1-related JNK and Smad signaling in the development of fibrosis

    Assessment of the Daily Cloud-Free MODIS Snow-Cover Product for Monitoring the Snow-Cover Phenology over the Qinghai-Tibetan Plateau

    No full text
    Snow cover plays a crucial role in surface hydrology and energy balance, especially in the Qinghai-Tibetan Plateau (QTP). This study used 12 years (2000–2011) of ground-observed snow depth at 87 meteorological stations to assess and verify the accuracy of the daily cloud-free snow-cover product from the Moderate Resolution Imaging Spectroradiometer (MODIS) over the QTP. On average, the daily cloud-free MODIS snow-cover product correctly identified the occurrence of snow cover with an accuracy of 90.74%, ranging from 54.39% to 99.07% among the 87 sites. The MODIS-derived data have large uncertainties in identifying the snow-cover phenology on the threshold of FSC >0 and FSC >50% (FSC, fractional snow cover). However, the MODIS-derived data can capture the interannual variability of the snow-cover phenology as compared with in situ observations. This study highlights the uncertainties in the daily snow-free MODIS snow-cover product to reflect snow-cover phenology over the QTP

    The complete mitochondrial genome of the forest crested lizard, Calotes emma (Squamata, Agamidae) in China by the next generation sequencing

    No full text
    The whole mitogenome can prove useful tools for phylogenetic reconstruction and efficiently recover with reasonable taxon sampling. Calotes emma is widely distributed and arboreal in habits. However, studies of C. emma are still very limited, including population genetics and evolutionary biology. In this study, we reported the complete mitochondrial genome of the C. emma by next-generation sequencing for future more researches on systematics and evolution of C. emma from the perspective of mitochondrial DNA. The length of mitogenome was 17,688 bp, including 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 tRNA genes and a control region. The phylogenetic tree recovered the monophyly of the Calotes and revealed that newly sequenced C. emma well supported as the sister taxon to C. mystaceus by very high posterior probabilities (1.0). The complete mitochondrial genome of C.emma in this study will be helpful for understanding the phylogenetic systematics and relationships, and molecular evolution of Calotes in Agamidae

    Single frequency network system coverage and trial testing of high speed railway television system

    Full text link
    • …
    corecore