102 research outputs found

    Distributed momentum based multi-agent optimization with different constraint sets

    Get PDF
    This paper considers a class of consensus optimization problems over a time-varying communication network wherein each agent can only interact with its neighbours. The target is to minimize the summation of all local and possibly non-smooth objectives in the presence of different constraint sets per agent. To achieve this goal, we propose a novel distributed heavy-ball algorithm that combines the subgradient tracking technique with a momentum term related to history information. This algorithm promotes the distributed application of existing centralized accelerated momentum methods, especially for constrained non-smooth problems. Under certain assumptions and conditions on the step-size and momentum coefficient, the convergence and optimality of the proposed algorithm can be guaranteed through a rigorous theoretical analysis, and a convergence rate of O(lnk/ √ k) in objective value is also established. Simulations on an ℓ1-regularized logisticregression problem show that the proposed algorithm can achieve faster convergence than existing related distributed algorithms, while a case study involving a building energy management problem further demonstrates its efficacy

    Switching Behavior to Cloud Enterprise Information Systems in China

    Get PDF
    Cloud computing has recently become a popular information technology in China. Several China’s enterprises tend to move from client/server enterprise information systems (EISs) to cloud EISs. However, few studies have addressed the switching issues. This study aims to investigate factors that affect switching behavior from client/server EISs to cloud EISs. The research model draws from technology-organization-environment framework. We collected data from top managers and owners of China’s enterprises to analyze six hypotheses. The results show that technological context (perceived security and compatibility), and environmental context (supplier support and consultant support) significantly influence switching behavior. The findings are useful for understanding switching issues from client/server EISs to cloud EISs

    Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus.

    Get PDF
    To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague-Dawley rats were fed with a high-sugar-high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation

    Preparation and biological activity of the monoclonal antibody against the second extracellular loop of the angiotensin II type 1 receptor

    Get PDF
    The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients’ sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases

    Coronal mini-jets in an activated solar tornado-like prominence

    Get PDF
    High-resolution observations from the Interface Region Imaging Spectrometer reveal the existence of a particular type of small solar jet, which arose singly or in clusters from a tornado-like prominence suspended in the corona. In this study, we perform a detailed statistical analysis of 43 selected mini-jets in the tornado event. Our results show that the mini-jets typically have (1) a projected length of 1.0–6.0 Mm, (2) a width of 0.2–1.0 Mm, (3) a lifetime of 10–50 s, (4) a velocity of 100–350 km s−1, and (5) an acceleration of 3–20 km s−2. Based on spectral diagnostics and EM-Loci analysis, these jets seem to be multithermal small-scale plasma ejections with an estimated average electron density of ~2.4  ×  1010 cm−3 and an approximate mean temperature of ~2.6  ×  105 K. Their mean kinetic energy density, thermal energy density, and dissipated magnetic field strength are roughly estimated to be ~9 erg cm−3, 3 erg cm−3, and 16 G, respectively. The accelerations of the mini-jets, the UV and EUV brightenings at the footpoints of some mini-jets, and the activation of the host prominence suggest that the tornado mini-jets are probably created by fine-scale external or internal magnetic reconnections (a) between the prominence field and the enveloping or background field or (b) between twisted or braided flux tubes within the prominence. The observations provide insight into the geometry of such reconnection events in the corona and have implications for the structure of the prominence magnetic field and the instability that is responsible for the eruption of prominences and coronal mass ejections.Publisher PDFPeer reviewe
    • …
    corecore