179 research outputs found
Maternal control of axialâparaxial mesoderm patterning via direct transcriptional repression in zebrafish
AbstractAxialâparaxial mesoderm patterning is a special dorsalâventral patterning event of establishing the vertebrate body plan. Though dorsalâventral patterning has been extensively studied, the initiation of axialâparaxial mesoderm pattering remains largely unrevealed. In zebrafish, spt cell-autonomously regulates paraxial mesoderm specification and flh represses spt expression to promote axial mesoderm fate, but the expression domains of spt and flh initially overlap in the entire marginal zone of the embryo. Defining spt and flh territories is therefore a premise of axialâparaxial mesoderm patterning. In this study, we investigated why and how the initial expression of flh becomes repressed in the ventrolateral marginal cells during blastula stage. Loss- and gain-of-function experiments showed that a maternal transcription factor Vsx1 is essential for restricting flh expression within the dorsal margin and preserving spt expression and paraxial mesoderm specification in the ventrolateral margin of embryo. Chromatin immunoprecipitation and electrophoretic mobility shift assays in combination with core consensus sequence mutation analysis further revealed that Vsx1 can directly repress flh by binding to the proximal promoter at a specific site. Inhibiting maternal vsx1 translation resulted in confusion of axial and paraxial mesoderm markers expression and axialâparaxial mesoderm patterning. These results demonstrated that direct transcriptional repression of the decisive axial mesoderm gene by maternal ventralizing factor is a crucial regulatory mechanism of initiating axialâparaxial mesoderm patterning in vertebrates
Convergence and Stability in Collocation Methods of Equation u
This paper is concerned with the convergence, global superconvergence, local superconvergence, and stability of collocation methods for uâ˛(t)=au(t)+bu([t]). The optimal convergence order and superconvergence order are obtained, and the stability regions for the collocation methods are determined. The conditions that the analytic stability region is contained in the numerical stability region are obtained, and some numerical experiments are given
Transcriptional regulation of BRD7 expression by Sp1 and c-Myc
<p>Abstract</p> <p>Background</p> <p>Bromodomain is an evolutionally conserved domain that is found in proteins strongly implicated in signal-dependent transcriptional regulation. Genetic alterations of bromodomain genes contributed to the development of many human cancers and other disorders. BRD7 is a recently identified bromodomain gene. It plays a critical role in cellular growth, cell cycle progression, and signal-dependent gene expression. Previous studies showed that BRD7 gene exhibited much higher-level of mRNA expression in normal nasopharyngeal epithelia than in nasopharyngeal carcinoma (NPC) biopsies and cell lines. However, little is known about its transcriptional regulation. In this study, we explored the transcriptional regulation of BRD7 gene.</p> <p>Method</p> <p>Potential binding sites of transcription factors within the promoter region of BRD7 gene were predicted with MatInspector Professional <url>http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl</url>. Mutation construct methods and luciferase assays were performed to define the minimal promoter of BRD7 gene. RT-PCR and western blot assays were used to detect the endogenous expression of transcription factor Sp1, c-Myc and E2F6 in all cell lines used in this study. Electrophoretic mobility shift assays (EMSA) and Chromatin immunoprecipitation (ChIP) were used to detect the direct transcription factors that are responsible for the promoter activity of BRD7 gene. DNA vector-based siRNA technology and cell transfection methods were employed to establish clone pools that stably expresses SiRNA against c-Myc expression in nasopharyngeal carcinoma 5-8F cells. Real-time PCR was used to detect mRNA expression of BRD7 gene in 5-8F/Si-c-Myc cells.</p> <p>Results</p> <p>We defined the minimal promoter of BRD7 gene in a 55-bp region (from -266 to -212bp), and identified that its promoter activity is inversely related to c-Myc expression. Sp1 binds to the Sp1/Myc-Max overlapping site of BRD7 minimal promoter, and slightly positively regulate its promoter activity. c-Myc binds to this Sp1/Myc-Max overlapping site as well, and negatively regulates the promoter activity and endogenous mRNA expression of BRD7 gene. Knock-down of c-Myc increases the promoter activity and mRNA level of BRD7 gene. The luciferase activity of the mutated promoter constructs showed that Sp1/Myc-Max overlapping site is a positive regulation element of BRD7 promoter.</p> <p>Conclusion</p> <p>These studies provide for the first time the evidence that c-Myc is indeed a negative regulator of BRD7 gene. These findings will help to further understand and uncover the bio-functions of BRD7 gene involved in the pathogenesis of NPC.</p
Synthesis of Fibrous Phosphorus Micropillar Arrays with PyroâPhototronic Effects
The bottom-up preparation of two-dimensional material micro-nano structures at scale facilitates the realisation of integrated applications in optoelectronic devices. Fibrous Phosphorus (FP), an allotrope of black phosphorus (BP), is one of the most promising candidate materials in the field of optoelectronics with its unique crystal structure and properties. However, to date, there are no bottom-up micro-nano structure preparation methods for crystalline phosphorus allotropes. Herein, we present the bottom-up preparation of fibrous phosphorus micropillar (FP-MP) arrays via a low-pressure gas-phase transport (LP-CVT) method that controls the directional phase transition from amorphous red phosphorus (ARP) to FP. In addition, self-powered photodetectors (PD) of FP-MP arrays with pyro-phototronic effects achieved detection beyond the bandgap limit. Our results provide a new approach for bottom-up preparation of other crystalline allotropes of phosphorus
The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights
Antarctic krill (Euphausia superba) is Earthâsmost abundant wild animal, and its enormous biomass is vital to
the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose
large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly
reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene
families associated with molting and energy metabolism, providing insights into adaptations to the cold
and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical
sites around the Antarctic continent reveals no clear population structure but highlights natural selection
associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and
a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover
the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for
future Antarctic research
Qualitative and Quantitative Detection of Chlamydophila pneumoniae DNA in Cerebrospinal Fluid from Multiple Sclerosis Patients and Controls
A standardized molecular test for the detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid (CSF) would assist the further assessment of the association of C. pneumoniae with multiple sclerosis (MS). We developed and validated a qualitative colorimetric microtiter plate-based PCR assay (PCR-EIA) and a real-time quantitative PCR assay (TaqMan) for detection of C. pneumoniae DNA in CSF specimens from MS patients and controls. Compared to a touchdown nested-PCR assay, the sensitivity, specificity, and concordance of the PCR-EIA assay were 88.5%, 93.2%, and 90.5%, respectively, on a total of 137 CSF specimens. PCR-EIA presented a significantly higher sensitivity in MS patients (pâ=â0.008) and a higher specificity in other neurological diseases (pâ=â0.018). Test reproducibility of the PCR-EIA assay was statistically related to the volumes of extract DNA included in the test (pâ=â0.033); a high volume, which was equivalent to 100 Âľl of CSF per reaction, yielded a concordance of 96.8% between two medical technologists running the test at different times. The TaqMan quantitative PCR assay detected 26 of 63 (41.3%) of positive CSF specimens that tested positive by both PCR-EIA and nested-PCR qualitative assays. None of the CSF specimens that were negative by the two qualitative PCR methods were detected by the TaqMan quantitative PCR. The PCR-EIA assay detected a minimum of 25 copies/ml C. pneumoniae DNA in plasmid-spiked CSF, which was at least 10 times more sensitive than TaqMan. These data indicated that the PCR-EIA assay possessed a sensitivity that was equal to the nested-PCR procedures for the detection of C. pneumoniae DNA in CSF. The TaqMan system may not be sensitive enough for diagnostic purposes due to the low C. pneumoniae copies existing in the majority of CSF specimens from MS patients
Towards a Muon Collider
A muon collider would enable the big jump ahead in energy reach that is
needed for a fruitful exploration of fundamental interactions. The challenges
of producing muon collisions at high luminosity and 10 TeV centre of mass
energy are being investigated by the recently-formed International Muon
Collider Collaboration. This Review summarises the status and the recent
advances on muon colliders design, physics and detector studies. The aim is to
provide a global perspective of the field and to outline directions for future
work.Comment: 118 pages, 103 figure
- âŚ