19 research outputs found

    Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co9S8 in Li-S Batteries

    Get PDF
    Several critical issues, such as the shuttling effect and the sluggish reaction kinetics, exist in the design of high-performance lithium–sulfur (Li-S) batteries. Here, it is reported that nitrogen doping can simultaneously and significantly improve both the immobilization and catalyzation effects of Co9S8 nanoparticles in Li-S batteries. Combining the theoretical calculations with experimental investigations, it is revealed that nitrogen atoms can increase the binding energies between LiPSs and Co9S8, and as well as alleviate the sluggish kinetics of Li-S chemistry in the Li2S6 cathode. The same effects are also observed when adding N-Co9S8 nanoparticles into the commercial Li2S cathode (which has various intrinsic advantages, but unfortunately a high overpotential). A remarkable improvement in the battery performances in both cases is observed. The work brings heteroatom-doped Co9S8 to the attention of designing high-performance Li-S batteries. A fundamental understanding of the inhibition of LiPSs shuttle and the catalytic effect of Li2S in the newly developed system may encourage more effort along this interesting direction. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium–Sulfur Batteries

    Get PDF
    Room-temperature sodium–sulfur (RT Na–S) batteries are arousing great interest in recent years. Their practical applications, however, are hindered by several intrinsic problems, such as the sluggish kinetic, shuttle effect, and the incomplete conversion of sodium polysulfides (NaPSs). Here a sulfur host material that is based on tungsten nanoparticles embedded in nitrogen-doped graphene is reported. The incorporation of tungsten nanoparticles significantly accelerates the polysulfides conversion (especially the reduction of Na2S4 to Na2S, which contributes to 75% of the full capacity) and completely suppresses the shuttle effect, en route to a fully reversible reaction of NaPSs. With a host weight ratio of only 9.1% (about 3–6 times lower than that in recent reports), the cathode shows unprecedented electrochemical performances even at high sulfur mass loadings. The experimental findings, which are corroborated by the first-principles calculations, highlight the so far unexplored role of tungsten nanoparticles in sulfur hosts, thus pointing to a viable route toward stable Na–S batteries at room temperatures

    Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    No full text
    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed

    Environmental Efficiency Evaluation of China’s Power Industry Based on the Two-Stage Network Slack-Based Measure Model

    No full text
    How to achieve the continuous improvement of the environmental performance level of the power industry within the requirements of clean and low-carbon energy development is the fundamental requirement and inevitable choice for the construction of ecological civilization and sustainable development. From the perspective of environmental protection, based on the Data Envelopment Analysis (DEA) method and the internal mechanism of power system production and supply, the power industry environmental efficiency evaluation index system was constructed, and the two-stage Network Slack-based Measure (NSBM) model considering undesired output was used to calculate China’s 30 provinces and municipalities from 1998 to 2019. The environmental efficiency is divided into two links: power generation efficiency and transmission and distribution efficiency. The study found that, within the research interval, the overall environmental efficiency of China’s 30 provinces is low, and the differences between provinces and cities are large, but they have gradually developed in a better direction after 2015. The power generation efficiency of the first link in most provinces and municipalities is higher than the transmission and distribution efficiency of the second link, and the low transmission and distribution efficiency is an important reason for the low comprehensive level of environmental efficiency. The overall evolution trend of environmental efficiency in the six regions of China is roughly the same, but the regional differences are obvious, showing a trend of “high in the southeast and low in the northwest”. The economic and natural resource differences in different provinces and cities in each region have led to varying degrees of redundancy in five aspects, including investment in power assets, installed power generation capacity, and length of transmission lines, which seriously affect the environmental efficiency of the power industry. This research attempts to open the “black box” of the environmental efficiency conversion process of the power industry, which can provide directions and strategic suggestions for the improvement of the efficiency of the power industry in China

    Crystallization of Ge-Rich GeSbTe Alloys: The Riddle Is Solved

    No full text
    International audienceAmong the phase change materials, Ge-rich GeSbTe (GST) alloys are of considerable interest as they offer a much higher thermal stability than their congruent contenders, a desirable characteristic for embedded digital memories and neuromorphic devices. Up to now, the mechanisms by which such alloys crystallize and progressively switch from one resistivity state to the other remained unclear and very controversial. Using in situ synchrotron X-ray diffraction during isothermal annealing and advanced transmission electron microscopy techniques, we solved this riddle and unveil the mechanisms leading to the overall crystallization of such alloys. During annealing at 310°C, the initially homogeneous and amorphous material undergoes a progressive phase separation leading to the formation of Ge-rich regions of different compositions. During this decomposition, first formed GeTe embryos crystallize and trigger the heterogeneous crystallization of the Ge cubic phase. As the phase separation proceeds, these embryos dissolve and the Ge phase gradually builds up through the nucleation of small grains. Only when this Ge cubic phase is largely formed, the remaining amorphous matrix may locally reach the Ge2Sb2Te5 composition at which it can crystallize as large grains. Our density functional theory calculations confirm that the quite exotic Pnma GeTe structure we have experimentally identified is more stable than the regular R3m structure at nanometric sizes

    High plasticity of ribosomal DNA organization in budding yeast

    No full text
    Summary: In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering
    corecore