94 research outputs found

    Research on the application status of image recognition technology in textile and clothing field

    Get PDF
    With the development of the times, computer, information technology gradually penetrated into all walks of life. Textile and clothing design, production, consumption integration of machine vision, graphic image recognition technology development have become a trend. At present, the intelligence degree of the textile and clothing industry has reached an unprecedented new height. In the production and identification of fabrics, the machine vision gradually replaces the manual work, and realizes the automatic and accurate production line. In the design, manufacturing, consumption and other aspects of clothing, image recognition technology has assumed the historical responsibility. Combined with the Internet of things, cloud computing and other technologies, it has improved the production efficiency and achieved intelligent design and production

    Research and application of maximum surface subsidence model under the condition of repeated mining in weakly cemented strata

    Get PDF
    The characteristics of surface subsidence under the condition of repeated mining in weakly cemented strata are of great significance to the safe and efficient mining and ecological restoration of coal resources in weakly cemented mining areas in western China. Theoretical analysis, similar simulation, numerical simulation and field monitoring are used to study the migration law of overlying strata and surface subsidence model under repeated mining conditions in weakly cemented strata, and the model is applied in engineering. The bulking characteristics of weakly cemented rock and the influence mechanism of repeated mining overburden strata movement on surface subsidence are discussed through theoretical analysis. The ‘maximum surface subsidence model under the condition of repeated mining in weakly cemented strata’ is established. There is a linear relationship between the bulking coefficient of weakly cemented rock, the mining thickness of lower coal and the maximum surface subsidence of weakly cemented strata. Through similar simulation and numerical simulation, the characteristics of repeated mining overburden and surface subsidence in weakly cemented strata are analyzed. The research results show that the development law of the separation height of the initial mining and repeated mining of the weakly cemented strata is basically the same, and both show a step-like rise. The surface subsidence curve of repeated mining is asymmetrically distributed, and the maximum subsidence value is biased towards the side of open cut. The maximum development height of overlying strata, the maximum surface subsidence value and the surface subsidence coefficient after initial mining and repeated mining are given. The established maximum surface subsidence model is used to predict the maximum surface subsidence value on site. The predicted value of the maximum surface subsidence model is similar to the measured value on site during the mining process of the working face, which verifies the rationality of the ' maximum surface subsidence model under the condition of repeated mining of weakly cemented strata '. At the same time, the predicted value of the maximum surface subsidence after the mining of the working face can provide a reference for the actual work on site

    Proton pump inhibitors may enhance the risk of digestive diseases by regulating intestinal microbiota

    Get PDF
    Proton pump inhibitors (PPIs) are the most used acid-inhibitory drugs, with a wide range of applications in the treatment of various digestive diseases. However, recently, there has been a growing number of digestive complications linked to PPIs, and several studies have indicated that the intestinal flora play an important role in these complications. Therefore, developing a greater understanding of the role of the gut microbiota in PPI-related digestive diseases is essential. Here, we summarize the current research on the correlation between PPI-related digestive disorders and intestinal flora and establish the altered strains and possible pathogenic mechanisms of the different diseases. We aimed to provide a theoretical basis and reference for the future treatment and prevention of PPI-related digestive complications based on the regulation of the intestinal microbiota

    Ovarian tissue cryopreservation in the pediatric with rare diseases- experience from China’s first and the largest ovarian tissue cryobank

    Get PDF
    BackgroundThere is limited information about the efficacy of ovarian tissue cryopreservation (OTC) in children. In the present study, we report eight patients with rare diseases who underwent OTC in China’s first and largest ovarian tissue cryobank.ProcedureData from girls with rare diseases who underwent OTC between September 2020 and November 2022 were retrospectively analyzed. We also compared the number of cryopreserved cortex pieces, follicle number, and AMH in those with rare diseases and age-matched children with non-rare diseases who also underwent OTC in our cryobank.ResultsThe median age of the children was 5.88 ± 3.52 (range 2-13) years old. Unilateral oophorectomy was undertaken via laparoscopy in all of the children. The diseases in the 8 patients were: 4 mucopolysaccharidoses (MPS I two cases, IVA two cases), 1 Diamond-Blackfan anemia (DBA), 1 Fanconi anemia (FA), 1 hyperimmunoglobulin E syndrome (HIES), 1 Niemann-Pick disease. The number of cryopreserved cortex pieces was 17.13 ± 6.36, and the follicle count per 2 mm biopsy was 447.38 ± 524.35. No significant difference in age, the count of cryopreserved cortex pieces, follicle number per 2 mm biopsy, and AMH level was seen between the 20 children with non-rare diseases and those with rare diseases.ConclusionsThe reports help practitioners counsel girls with rare diseases about fertility preservation. The demand for OTC in pediatrics will likely grow as a standard of care

    Research on the application status of image recognition technology in textile and clothing field

    No full text
    With the development of the times, computer, information technology gradually penetrated into all walks of life. Textile and clothing design, production, consumption integration of machine vision, graphic image recognition technology development have become a trend. At present, the intelligence degree of the textile and clothing industry has reached an unprecedented new height. In the production and identification of fabrics, the machine vision gradually replaces the manual work, and realizes the automatic and accurate production line. In the design, manufacturing, consumption and other aspects of clothing, image recognition technology has assumed the historical responsibility. Combined with the Internet of things, cloud computing and other technologies, it has improved the production efficiency and achieved intelligent design and production

    A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens

    No full text
    In this study, a fractal dimension-based method has been developed to compute the visual complexity of the heterogeneity in the built environment. The built environment is a very complex combination, structurally consisting of both natural and artificial elements. Its fractal dimension computation is often disturbed by the homogenous visual redundancy, which is textured but needs less attention to process, so that it leads to a pseudo-evaluation of visual complexity in the built environment. Based on human visual perception, the study developed a method: fractal dimension of heterogeneity in the built environment, which includes Potts segmentation and Canny edge detection as image preprocessing procedure and fractal dimension as computation procedure. This proposed method effectively extracts perceptually meaningful edge structures in the visual image and computes its visual complexity which is consistent with human visual characteristics. In addition, an evaluation system combining the proposed method and the traditional method has been established to classify and assess the visual complexity of the scenario more comprehensively. Two different gardens had been computed and analyzed to demonstrate that the proposed method and the evaluation system provide a robust and accurate way to measure the visual complexity in the built environment

    A Measurement of Visual Complexity for Heterogeneity in the Built Environment Based on Fractal Dimension and Its Application in Two Gardens

    No full text
    In this study, a fractal dimension-based method has been developed to compute the visual complexity of the heterogeneity in the built environment. The built environment is a very complex combination, structurally consisting of both natural and artificial elements. Its fractal dimension computation is often disturbed by the homogenous visual redundancy, which is textured but needs less attention to process, so that it leads to a pseudo-evaluation of visual complexity in the built environment. Based on human visual perception, the study developed a method: fractal dimension of heterogeneity in the built environment, which includes Potts segmentation and Canny edge detection as image preprocessing procedure and fractal dimension as computation procedure. This proposed method effectively extracts perceptually meaningful edge structures in the visual image and computes its visual complexity which is consistent with human visual characteristics. In addition, an evaluation system combining the proposed method and the traditional method has been established to classify and assess the visual complexity of the scenario more comprehensively. Two different gardens had been computed and analyzed to demonstrate that the proposed method and the evaluation system provide a robust and accurate way to measure the visual complexity in the built environment

    Molecular Recognition between Aβ-Specific Single-Domain Antibody and Aβ Misfolded Aggregates

    No full text
    Aβ is the toxic amyloid polypeptide responsible for Alzheimer’s disease (AD). Prevention and elimination of the Aβ misfolded aggregates are the promising therapeutic strategies for the AD treatments. Gammabody, the Aβ-Specific Single-domain (VH) antibody, recognizes Aβ aggregates with high affinity and specificity and reduces their toxicities. Employing the molecular dynamics simulations, we studied diverse gammabody-Aβ recognition complexes to get insights into their structural and dynamic properties and gammabody-Aβ recognitions. Among many heterogeneous binding modes, we focused on two gammabody-Aβ recognition scenarios: recognition through Aβ β-sheet backbone and on sidechain surface. We found that the gammabody primarily uses the complementarity-determining region 3 (CDR3) loop with the grafted Aβ sequence to interact with the Aβ fibril, while CDR1/CDR2 loops have very little contact. The gammabody-Aβ complexes with backbone binding mode are more stable, explaining the gammabody’s specificity towards the C-terminal Aβ sequence
    • …
    corecore