10 research outputs found

    A guide to northern sea cucumbers: The biology and management of Cucumaria frondosa

    Get PDF
    This document synthesising knowledge on the northern sea cucumber Cucumaria frondosa was prepared for all stakeholders, including industry participants, government scientists, policymakers, and academic researchers. Its aim is to highlight the uniqueness of this marine resource to guide the industry forward and to emphasize areas that deserve further investigation. Available data from eastern and northern Canada, eastern United States of America, Greenland, northern Europe and the Russian Federation are presented. Topics covered include the taxonomy, distribution, biology, and ecology of the species, the natural threats it faces, the current harvesting, processing and marketing practices, and the prospects for aquaculture development. Relying on a knowledge base gathered over more than 40 years, this contribution compares C. frondosa with other common commercial species of sea cucumbers to tease out the major aspects that set it apart. A final section provides a number of key recommendations for its management and conservation

    Population dynamics of a non-indigenous colonial ascidian tunicate in a subarctic harbour

    Get PDF
    Botryllus schlosseri (Subphylum Tunicata: Class Ascidiacea) is a nonindigenous ascidian species of global and national interest, which has extensive populations along the south coast of insular Newfoundland. Economically, this species has been of concern to industry, management, and policymakers because non-indigenous ascidian species have been a severe and costly nuisance for bivalve aquaculture. Ecologically, the presence of this temperate-adapted species in Newfoundland represents an expansion of its global range into subarctic waters. Thus, I aimed to describe the population dynamics of B. schlosseri in Arnold's Cove, Placentia Bay, Newfoundland and Labrador, Canada, by determining the temporal and spatial patterns of recruitment and the seasonal cycle of colony abundance. In addition, I aimed to compile a checklist of extant indigenous and non-indigenous ascidian species of eastern Canada with an emphasis on species from Newfoundland and Labrador. -- Artificial plates were used to determine recruitment rates among three sites, depths (1.0, 2.5, and 4.0 m from the water surface), and substrate types (aluminum, PVC, and wood in 2010; only PVC in 2011), in Arnold's Cove. Concurrently, density and cover of colonies were determined from the analysis of high-definition video surveys of a belt transect of wharf pilings. Seasonal biomass production was estimated from carbon to nitrogen (C:N) ratios and dry weight per unit area of dissected tissue subsamples. -- The seasonal window for recruitment was from early August to mid-October. Recruitment rates were greater near the water surface than at other depths, and on PVC in comparison to aluminum and wood substrates. Maximum recruitment rates on PVC at 1.0 m were 29.3 and 43.5 m⁻ÂČd⁻Âč in September of 2010 and 2011, respectively, coincident with maximum seasonal seawater temperatures of 16-17°C. Colonies were present year-round on pilings. In the upper subtidal zone, monthly mean cover ranged from an annual minimum of 0.6% in May to a maximum of 2.8% in October. Colony size and biomass, though not C:N ratios, had a significant seasonal signal. -- These findings suggest that recruitment was predominantly constrained by seawater temperature within the short productive season, and that the population was sustained from one year to the next because of high cover of overwintering colonies. The efficacy of utilising PVC to track recruitment of Botryllus schlosseri, and perhaps other closely related ascidian species is supported by my data. Future management of B. schlosseri should target mitigation efforts before the annual onset of sexual reproduction and recruitment in July and within the upper 3-4 m of the water column

    Thermal stress gradient causes increasingly negative effects towards the range limit of an invasive mussel

    No full text
    Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south–southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature. Using in situ temperature logger data, we calculated the effective shore level for several sites by determining the duration of immersion and emersion. Summer and winter inshore water temperatures were linked to distance from the mussel's warm range edge (our proxy for an EF-associated stress gradient), suggesting that seasonality in temperature contributes to first order effects. The gradient in thermal stress clearly affected densities, but its influence on mussel size, shell degradation, and epibiosis was weaker. Relationships among mussel size, shell degradation, and epibiosis were more robust. Larger, older mussels had more degraded shells and more epibionts, with endolithic damage facilitating epibiosis. EF associated with a gradient in thermal stress directly limits the distribution, abundance, and size structure of mussel populations, with important indirect second and third order effects of parasitic disease and epibiont load, respectively

    StarmapVis: An interactive and narrative visualisation tool for single-cell and spatial data

    No full text
    Current single-cell visualisation techniques project high dimensional data into ‘map’ views to identify high-level structures such as cell clusters and trajectories. New tools are needed to allow the transversal through the high dimensionality of single-cell data to explore the single-cell local neighbourhood. StarmapVis is a convenient web application displaying an interactive downstream analysis of single-cell expression or spatial transcriptomic data. The concise user interface is powered by modern web browsers to explore the variety of viewing angles unavailable to 2D media. Interactive scatter plots display clustering information, while the trajectory and cross-comparison among different coordinates are displayed in connectivity networks. Automated animation of camera view is a unique feature of our tool. StarmapVis also offers a useful animated transition between two-dimensional spatial omic data to three-dimensional single cell coordinates. The usability of StarmapVis is demonstrated by four data sets, showcasing its practical usability. StarmapVis is available at: https://holab-hku.github.io/starmapVis

    Biogeographical patterns of tunicates utilizing eelgrass as substrate in the western North Atlantic between 39 degrees and 47 degrees north latitude (New Jersey to Newfoundland)

    No full text
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carmen, M. R., Colarusso, P. D., Neckles, H. A., Bologna, P., Caines, S., Davidson, J. D. P., Evans, N. T., Fox, S. E., Grunden, D. W., Hoffman, S., Ma, K. C. K., Matheson, K., McKenzie, C. H., Nelson, E. P., Plaisted, H., Reddington, E., Schott, S., & Wong, M. C. Biogeographical patterns of tunicates utilizing eelgrass as substrate in the western North Atlantic between 39 degrees and 47 degrees north latitude (New Jersey to Newfoundland). Management of Biological Invasions, 10(4), (2019): 602-616, doi: 10.3391/mbi.2019.10.4.02.Colonization of eelgrass (Zostera marina L.) by tunicates can lead to reduced plant growth and survival. Several of the tunicate species that are found on eelgrass in the northwest Atlantic are highly aggressive colonizers, and range expansions are predicted in association with climate-change induced increases in seawater temperature. In 2017, we surveyed tunicates within eelgrass meadows at 33 sites from New Jersey to Newfoundland. Eight tunicate species were identified colonizing eelgrass, of which four were non-native and one was cryptogenic. The most common species (Botrylloides violaceus and Botryllus schlosseri) occurred from New York to Atlantic Canada. Tunicate faunas attached to eelgrass were less diverse north of Cape Cod, Massachusetts. Artificial substrates in the vicinity of the eelgrass meadows generally supported more tunicate species than did the eelgrass, but fewer species co-occurred in northern sites than southern sites. The latitudinal gradient in tunicate diversity corresponded to gradients of summertime sea surface temperature and traditional biogeographical zones in the northwest Atlantic, where Cape Cod represents a transition between cold-water and warm-water invertebrate faunas. Tunicate density in the eelgrass meadows was low, ranging generally from 1–25% cover of eelgrass shoots, suggesting that space availability does not currently limit tunicate colonization of eelgrass. This survey, along with our 2013 survey, provide a baseline for identifying future changes in tunicate distribution and abundance in northwest Atlantic eelgrass meadows.We thank Benedikte Vercaemer, Dann Blackwood, Jonathon Seaward, Dani Cleary, Sam Hartman, Kim Manzo, and Jason Havelin for field assistance. Thank you too to Alicia Grimaldi for map construction and Page Valentine for constructively reviewing the manuscript. Thank you to the Community Preservation Committee of Oak Bluffs, Massachusetts, and the USGS-WHOI Cooperative Agreement for funding (Carman). All data used in this paper are publicly available through USGS ScienceBase at https://doi.org/10.5066/P9GDBDFQ. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

    Immunocompromised patients with acute respiratory distress syndrome : Secondary analysis of the LUNG SAFE database

    Get PDF
    The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p < 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p < 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia

    No full text
    Summary: Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders
    corecore