15 research outputs found

    Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System

    No full text
    As an important branch of medical robotics, a rehabilitation training robot for the hemiplegic upper limbs is a research hotspot of rehabilitation training. Based on the motion relearning program, rehabilitation technology, human anatomy, mechanics, computer science, robotics, and other fields of technology are covered. Based on an sEMG real-time training system for rehabilitation, the exoskeleton robot still has some problems that need to be solved in this field. Most of the existing rehabilitation exoskeleton robotic systems are heavy, and it is difficult to ensure the accuracy and real-time performance of sEMG signals. In this paper, we design a real-time training system for the upper limb exoskeleton robot based on the EMG signal. It has four main characteristics: light weight, portability, high precision, and low delay. This work includes the structure of the rehabilitation robotic system and the method of signal processing of the sEMG. An experiment on the accuracy and time delay of the sEMG signal processing has been done. In the experimental results, the recognition accuracy of the sEMG is 94%, and the average delay time is 300 ms, which meets the accuracy and real-time requirements

    The association of rod curvature with postoperative outcomes in patients undergoing posterior lumbar interbody fusion for spinal stenosis: a retrospective case–control study

    No full text
    Abstract Background Restoration of sagittal balance is a crucial consideration in posterior lumbar interbody fusion (PLIF) surgery and adverse postoperative outcomes are associated with inadequate restoration of sagittal alignment. However, there remains a shortage of substantial evidence regarding the effect of rod curvature on both sagittal spinopelvic radiographic parameters and clinical outcomes. Method A retrospective case–control study was conducted in this study. Patient demographics (age, gender, height, weight and BMI), surgical characteristics (number of fused levels, surgical time, blood loss and hospital stay) and radiographic parameters (lumbar lordosis [LL], sacral slope [SS], pelvic incidence [PI], pelvic tilt [PT], PI-LL, Cobb angle of fused segments [Cobb], rod curvature [RC], Posterior tangent angle of fused segments [PTA] and RC-PTA) were analyzed. Results Patients in the abnormal group had older mean age and suffered more blood loss than those in the normal group. In addition, RC and RC-PTA were significantly lower in the abnormal group compared to the normal group. Multivariate regression analysis revealed that lower age (OR = 0.94; 95% CI: 0.89–0.99; P = 0.0187), lower PTA (OR = 0.91; 95% CI: 0.85–0.96; P = 0.0015) and higher RC (OR = 1.35; 95% CI: 1.20–1.51; P < 0.0001) were related to higher odds of better surgical outcomes. The receiver operating characteristic curve analysis showed that the ROC curve (AUC) for predicting outcomes of surgery by RC classifier was 0.851 (0.769–0.932). Conclusions In patients who underwent PLIF surgery for lumbar spinal stenosis, those who had a satisfactory postoperative outcome tended to be younger, had lower blood loss, and higher values of RC and RC-PTA compared to those who had poor recovery and required revision surgery. Additionally, RC was found to be a reliable predictor of postoperative outcomes

    Biomechanical and Clinical Study of Rod Curvature in Single-Segment Posterior Lumbar Interbody Fusion

    No full text
    Objective: Pedicle screw fixation is a common technique used in posterior lumbar interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring is often subjective and not satisfactory, but only few studies focused on the rod-contouring issue previously. The aim of the study was to explore the effect of the rod contouring on the single-segment PLIF by the finite element (FE) method and retrospective study. Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs) were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and posterior tangent methods applied in the lumbar lordosis measurement, and zero RC indicating straight rods was included as well. Clinical data of patients subjected to L4/5 segmental PLIF were also analyzed to verify the correlation between RCs and clinical outcome. Results: No difference was observed among the four RC models in the range of motion (ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four actions. The posterior tangent model had less maximum stress in fixation (MSF) in flexion, extension, and axial rotation than the other RC models. Patients with favorable prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused segments with respect to those who had poor prognosis and received revision surgery. Conclusion: All RC models had similar biomechanical behaviors under four actions. The posterior tangent-based RC model was superior in fixation stress distribution compared to centroid, Cobb, and straight models. The retrospective study demonstrated that moderate RC and positive RC-PTA were associated with better postoperative results.</p

    Biomechanical and Clinical Study of Rod Curvature in Single-Segment Posterior Lumbar Interbody Fusion

    No full text
    Objective: Pedicle screw fixation is a common technique used in posterior lumbar interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring is often subjective and not satisfactory, but only few studies focused on the rod-contouring issue previously. The aim of the study was to explore the effect of the rod contouring on the single-segment PLIF by the finite element (FE) method and retrospective study. Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs) were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and posterior tangent methods applied in the lumbar lordosis measurement, and zero RC indicating straight rods was included as well. Clinical data of patients subjected to L4/5 segmental PLIF were also analyzed to verify the correlation between RCs and clinical outcome. Results: No difference was observed among the four RC models in the range of motion (ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four actions. The posterior tangent model had less maximum stress in fixation (MSF) in flexion, extension, and axial rotation than the other RC models. Patients with favorable prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused segments with respect to those who had poor prognosis and received revision surgery. Conclusion: All RC models had similar biomechanical behaviors under four actions. The posterior tangent-based RC model was superior in fixation stress distribution compared to centroid, Cobb, and straight models. The retrospective study demonstrated that moderate RC and positive RC-PTA were associated with better postoperative results.</p

    Biomechanical and Clinical Study of Rod Curvature in Single-Segment Posterior Lumbar Interbody Fusion

    No full text
    Objective: Pedicle screw fixation is a common technique used in posterior lumbar interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring is often subjective and not satisfactory, but only few studies focused on the rod-contouring issue previously. The aim of the study was to explore the effect of the rod contouring on the single-segment PLIF by the finite element (FE) method and retrospective study. Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs) were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and posterior tangent methods applied in the lumbar lordosis measurement, and zero RC indicating straight rods was included as well. Clinical data of patients subjected to L4/5 segmental PLIF were also analyzed to verify the correlation between RCs and clinical outcome. Results: No difference was observed among the four RC models in the range of motion (ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four actions. The posterior tangent model had less maximum stress in fixation (MSF) in flexion, extension, and axial rotation than the other RC models. Patients with favorable prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused segments with respect to those who had poor prognosis and received revision surgery. Conclusion: All RC models had similar biomechanical behaviors under four actions. The posterior tangent-based RC model was superior in fixation stress distribution compared to centroid, Cobb, and straight models. The retrospective study demonstrated that moderate RC and positive RC-PTA were associated with better postoperative results.</p

    Biomechanical and Clinical Study of Rod Curvature in Single-Segment Posterior Lumbar Interbody Fusion

    No full text
    Objective: Pedicle screw fixation is a common technique used in posterior lumbar interbody fusion (PLIF) surgery for lumbar disorders. During operation, rod contouring is often subjective and not satisfactory, but only few studies focused on the rod-contouring issue previously. The aim of the study was to explore the effect of the rod contouring on the single-segment PLIF by the finite element (FE) method and retrospective study. Methods: A FE model of the lumbosacral vertebrae was first reconstructed, and subsequently single-segmental (L4/5) PLIF surgeries with four rod curvatures (RCs) were simulated. Herein, three RCs were designed by referring to centroid, Cobb, and posterior tangent methods applied in the lumbar lordosis measurement, and zero RC indicating straight rods was included as well. Clinical data of patients subjected to L4/5 segmental PLIF were also analyzed to verify the correlation between RCs and clinical outcome. Results: No difference was observed among the four RC models in the range of motion (ROM), intersegmental rotation angle (IRA), and intradiscal pressure (IDP) under four actions. The posterior tangent model had less maximum stress in fixation (MSF) in flexion, extension, and axial rotation than the other RC models. Patients with favorable prognosis had larger RC and positive RC minus posterior tangent angle (RC-PTA) of fused segments with respect to those who had poor prognosis and received revision surgery. Conclusion: All RC models had similar biomechanical behaviors under four actions. The posterior tangent-based RC model was superior in fixation stress distribution compared to centroid, Cobb, and straight models. The retrospective study demonstrated that moderate RC and positive RC-PTA were associated with better postoperative results.</p

    Biomechanical Evaluation of the Cross-link Usage and Position in the Single and Multiple Segment Posterior Lumbar Interbody Fusion

    No full text
    Objective: Previous studies have neither explored the usage of cross-links nor investigated the optimal position of the cross-links in posterior lumbar interbody fusion (PLIF). This study evaluates biomechanical properties of cross-links in terms of different fixation segments and optimal position in single- and multi-segment posterior lumbar interbody fusion. Methods: Two finite element (FE) models of instrumented lumbosacral spine with single-(L4/5) and multi-segment (L3-S1) PLIF surgery were simulated. On the basis of the two models, the benefits of the usage of cross-links were assessed and compared with the status of no application of cross-links. Moreover, the effects of position of cross-links on multi-segment PLIF surgery were studied in Upper, Middle, and Lower positions. Results: No significant difference was found in the range of motion (ROM), intersegmental rotational angle (IRA) of adjacent segments, and intradiscal pressure (IDP) regardless of the usage of cross-links in the single-segment PLIF surgery, while the cross-link increased the maximum von Mises stress in the fixation (MSF) under the axial rotation (53.65 MPa vs 41.42 MPa). In the multi-segment PLIF surgery, the usage of cross-links showed anti-rotational advantages indicated by ROM (Without Cross-link 2.35o, Upper, 2.24o; Middle, 2.26o; Lower, 2.30o) and IRA (Without Cross-link 1.19o, Upper, 1.08o; Middle, 1.09o; Lower, 1.13o). The greatest values of MSF were found in without cross-link case under the flexion, lateral bending, and axial rotation (37.48, 62.61, and 86.73 MPa). The application of cross-links at the Middle and Lower positions had lower values of MSF (48.79 and 69.62 MPa) under the lateral bending and axial rotation, respectively. Conclusion: The application of cross-links was not beneficial for the single-segment PLIF, while it was found highly advantageous for the multi-segment PLIF. Moreover, the usage of cross-links at the Middle or Lower positions resulted in a better biomechanical stability.</p

    Additional file 1 of The association of rod curvature with postoperative outcomes in patients undergoing posterior lumbar interbody fusion for spinal stenosis: a retrospective case–control study

    No full text
    Additional file 1: Supplement Digital Content 1. Summary receiver operating characteristic curvesfor RC for predicting postoperative outcomes. Supplement Digital Content 2. Summary receiver operatingcharacteristic curves for RC-PTA for predicting postoperative outcomes
    corecore