5 research outputs found

    Triple Sequence Learning for Cross-domain Recommendation

    Full text link
    Cross-domain recommendation (CDR) aims to leverage the users' behaviors in both source and target domains to improve the target domain's performance. Conventional CDR methods typically explore the dual relations between the source and target domains' behavior sequences. However, they ignore modeling the third sequence of mixed behaviors that naturally reflects the user's global preference. To address this issue, we present a novel and model-agnostic Triple sequence learning for cross-domain recommendation (Tri-CDR) framework to jointly model the source, target, and mixed behavior sequences in CDR. Specifically, Tri-CDR independently models the hidden user representations for the source, target, and mixed behavior sequences, and proposes a triple cross-domain attention (TCA) to emphasize the informative knowledge related to both user's target-domain preference and global interests in three sequences. To comprehensively learn the triple correlations, we design a novel triple contrastive learning (TCL) that jointly considers coarse-grained similarities and fine-grained distinctions among three sequences, ensuring the alignment while preserving the information diversity in multi-domain. We conduct extensive experiments and analyses on two real-world datasets with four domains. The significant improvements of Tri-CDR with different sequential encoders on all datasets verify the effectiveness and universality. The source code will be released in the future.Comment: 11 pages, 5 figures, under revie

    Silibinin reduces in vitro methane production by regulating the rumen microbiome and metabolites

    Get PDF
    This study used Silibinin as an additive to conduct fermentation experiments, wherein its effects on rumen gas production, fermentation, metabolites, and microbiome were analyzed in vitro. The silibinin inclusion level were 0 g/L (control group), 0.075 g/L, 0.15 g/L, 0.30 g/L, and 0.60 g/L (experimental group). Fermentation parameters, total gas production, carbon dioxide (CO2), methane (CH4), hydrogen (H2), and their percentages were determined. Further analysis of the rumen microbiome’s relative abundance and α/β diversity was performed on the Illumina NovaSeq sequencing platform. Qualitative and quantitative metabolomics analyses were performed to analyze the differential metabolites and metabolic pathways based on non-targeted metabolomics. The result indicated that with an increasing dose of silibinin, there was a linear reduction in total gas production, CO2, CH4, H2 and their respective percentages, and the acetic acid to propionic acid ratio. Concurrent with a linear increase in pH, when silibinin was added at 0.15 g/L and above, the total volatile fatty acid concentration decreased, the acetic acid molar ratio decreased, the propionic acid molar ratio increased, and dry matter digestibility decreased. At the same time, the relative abundance of Prevotella, Isotricha, Ophryoscolex, unclassified_Rotifera, Methanosphaera, Orpinomyces, and Neocallimastix in the rumen decreased after adding 0.60 g/L of silibinin. Simultaneously, the relative abundance of Succiniclasticum, NK4A214_group, Candidatus_Saccharimonas, and unclassified_Lachnospiraceae increased, altering the rumen species composition, community, and structure. Furthermore, it upregulated the ruminal metabolites, such as 2-Phenylacetamide, Phlorizin, Dalspinin, N6-(1,2-Dicarboxyethyl)-AMP, 5,6,7,8-Tetrahydromethanopterin, Flavin mononucleotide adenine dinucleotide reduced form (FMNH), Pyridoxine 5′-phosphate, Silibinin, and Beta-D-Fructose 6-phosphate, affecting phenylalanine metabolism, flavonoid biosynthesis, and folate biosynthesis pathways. In summary, adding silibinin can alter the rumen fermentation parameters and mitigate enteric methane production by regulating rumen microbiota and metabolites, which is important for developing novel rumen methane inhibitors

    Influence of B<sub>4</sub>C Particle Size on the Microstructure and Mechanical Properties of B<sub>4</sub>C/Al Composites Fabricated by Pressureless Infiltration

    No full text
    To investigate the effect of B4C particle size on the microstructure and mechanical properties of B4C/Al composites, and to provide theoretical guidance for the subsequent thermal processing of composites, B4C/Al composites with varying B4C particle sizes (0.2 µm, 0.5 µm, 1 µm, 10 µm) were fabricated using pressureless infiltration. The microstructure of the composites was characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the mechanical properties were analyzed by hardness test, three-point bending and high temperature compression. The results indicated that Al3BC and AlB2 were the primary interfacial reaction products in B4C/Al composites, and interface reaction could be alleviated with increasing particle size. B4C/Al composites with larger B4C particle sizes exhibited a relatively uniform and discrete distribution of B4C, while those with smaller B4C particle sizes showed agglomeration of B4C. The Vickers hardness and peak flow stress of B4C/Al composites gradually decreased with the increase of B4C particle size, while the bending strength, flexural modulus, and fracture toughness tended to increase. In addition, when B4C particle size was 10 µm, the composites displayed optimal comprehensive performance with the lowest peak flow stress (150 MPa) and the highest fracture toughness (12.75 MPa·m1/2)

    m(6) A-Atlas v2.0: updated resources for unraveling the N 6-methyladenosine (m(6)A) epitranscriptome among multiple species

    No full text
    N 6-Methyladenosine (m6A) is one of the most abundant internal chemical modifications on eukaryote mRNA and is involved in numerous essential molecular functions and biological processes. To facilitate the study of this important post-transcriptional modification, we present here m6A-Atlas v2.0, an updated version of m6A-Atlas. It was expanded to include a total of 797 091 reliable m6A sites from 13 high-resolution technologies and two single-cell m6A profiles. Additionally, three methods (exomePeaks2, MACS2 and TRESS) were used to identify >16 million m6A enrichment peaks from 2712 MeRIP-seq experiments covering 651 conditions in 42 species. Quality control results of MeRIP-seq samples were also provided to help users to select reliable peaks. We also estimated the condition-specific quantitative m6A profiles (i.e. differential methylation) under 172 experimental conditions for 19 species. Further, to provide insights into potential functional circuitry, the m6A epitranscriptomics were annotated with various genomic features, interactions with RNA-binding proteins and microRNA, potentially linked splicing events and single nucleotide polymorphisms. The collected m6A sites and their functional annotations can be freely queried and downloaded via a user-friendly graphical interface at: http://rnamd.org/m6a
    corecore