99 research outputs found

    On conformally flat cubic metrics with weakly isotropic scalar curvature

    Full text link
    The conformal properties of metrics are meaningful in Riemannian and Finsler geometry, and cubic metrics are useful in physics and biology. In this paper, we study the conformally flat cubic metrics with weakly isotropic scalar curvature. We also prove that such metrics must be Minkowski metrics

    One-Step Clustering with Adaptively Local Kernels and a Neighborhood Kernel

    Get PDF
    Among the methods of multiple kernel clustering (MKC), some adopt a neighborhood kernel as the optimal kernel, and some use local base kernels to generate an optimal kernel. However, these two methods are not synthetically combined together to leverage their advantages, which affects the quality of the optimal kernel. Furthermore, most existing MKC methods require a two-step strategy to cluster, i.e., first learn an indicator matrix, then executive clustering. This does not guarantee the optimality of the final results. To overcome the above drawbacks, a one-step clustering with adaptively local kernels and a neighborhood kernel (OSC-ALK-ONK) is proposed in this paper, where the two methods are combined together to produce an optimal kernel. In particular, the neighborhood kernel improves the expression capability of the optimal kernel and enlarges its search range, and local base kernels avoid the redundancy of base kernels and promote their variety. Accordingly, the quality of the optimal kernel is enhanced. Further, a soft block diagonal (BD) regularizer is utilized to encourage the indicator matrix to be BD. It is helpful to obtain explicit clustering results directly and achieve one-step clustering, then overcome the disadvantage of the two-step strategy. In addition, extensive experiments on eight data sets and comparisons with six clustering methods show that OSC-ALK-ONK is effective

    Clinical Characteristics of 26 Human Cases of Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in China

    Get PDF
    BACKGROUND: While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6-62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5 x 10(9) cells/L vs 93.0 x 10(9) cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003). CONCLUSIONS/SIGNIFICANCE: The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases

    Dynamic Analysis of a Shallow Buried Tunnel Influenced by a Neighboring Semi-cylindrical Hill and Semi-cylindrical Canyon

    Get PDF
    This paper provides a dynamic analysis of the response of a subsurface cylindrical tunnel to SH waves influenced by a neighboring semi-cylindrical hill and semi-cylindrical canyon in half-space using complex functions. For convenience in finding a solution, the half-space is divided into two parts and the scattered wave functions are constructed in both parts. Then the mixed boundary conditions are satisfied by moving coordinates. Finally, the problem is reduced to solving a set of infinite linear algebraic equations, for which the unknown coefficients are obtained by truncation of the infinite set of equations. The effects of the incident angles and frequencies of SH waves, as well as of the radius of the tunnel, hill, and canyon on the dynamic stress concentration of the tunnel are studied. The results show that the hill and canyon have a significant effect on the dynamic stress concentration of the tunnel

    Mathematical Expression of Design Hysteretic Energy Spectra Based on Chinese Soil Type

    No full text
    This paper explores the energy-based seismic design based on source-to-site distance and the site classification found in Chinese national codes. Specifically, 750 ground motion records were selected according to Chinese site classification, and the equivalent velocity spectra of cumulative hysteretic energy (HE) demand were derived using the energy-balance equation with the single degree of freedom (SDOF) system. In addition, the effects of soil type, earthquake magnitude, site group, structural damping ratio, and ductility ratio were investigated on the HE spectra, and mathematical expression of the equivalent velocity spectrum was presented. The analysis of the HE spectra indicated that the HE spectra were significantly affected by the ground acceleration amplitude, soil type, site group, and damping ratio. The ductility ratio also had an impact on the spectral value, but no effect on the spectral shape. The effect of postyielding stiffness ratio (PYSR) on the spectral shape and spectral value could be neglected. The research findings shed new light on the seismic design based on HE spectrum
    • …
    corecore