53 research outputs found

    WPU-Net: Boundary Learning by Using Weighted Propagation in Convolution Network

    Full text link
    Deep learning has driven a great progress in natural and biological image processing. However, in material science and engineering, there are often some flaws and indistinctions in material microscopic images induced from complex sample preparation, even due to the material itself, hindering the detection of target objects. In this work, we propose WPU-net that redesigns the architecture and weighted loss of U-Net, which forces the network to integrate information from adjacent slices and pays more attention to the topology in boundary detection task. Then, the WPU-net is applied into a typical material example, i.e., the grain boundary detection of polycrystalline material. Experiments demonstrate that the proposed method achieves promising performance and outperforms state-of-the-art methods. Besides, we propose a new method for object tracking between adjacent slices, which can effectively reconstruct 3D structure of the whole material. Finally, we present a material microscopic image dataset with the goal of advancing the state-of-the-art in image processing for material science.Comment: technical repor

    End-to-End Learning for Simultaneously Generating Decision Map and Multi-Focus Image Fusion Result

    Full text link
    The general aim of multi-focus image fusion is to gather focused regions of different images to generate a unique all-in-focus fused image. Deep learning based methods become the mainstream of image fusion by virtue of its powerful feature representation ability. However, most of the existing deep learning structures failed to balance fusion quality and end-to-end implementation convenience. End-to-end decoder design often leads to unrealistic result because of its non-linear mapping mechanism. On the other hand, generating an intermediate decision map achieves better quality for the fused image, but relies on the rectification with empirical post-processing parameter choices. In this work, to handle the requirements of both output image quality and comprehensive simplicity of structure implementation, we propose a cascade network to simultaneously generate decision map and fused result with an end-to-end training procedure. It avoids the dependence on empirical post-processing methods in the inference stage. To improve the fusion quality, we introduce a gradient aware loss function to preserve gradient information in output fused image. In addition, we design a decision calibration strategy to decrease the time consumption in the application of multiple images fusion. Extensive experiments are conducted to compare with 19 different state-of-the-art multi-focus image fusion structures with 6 assessment metrics. The results prove that our designed structure can generally ameliorate the output fused image quality, while implementation efficiency increases over 30\% for multiple images fusion.Comment: repor

    The sensory materials library - AiLoupe Pecha Kucha presentation

    Get PDF
    Intelligent Design Systems for Innovation is developing AiLoupe, a mobile-app which utilises image recognition to identify, characterise and catalogue materials. It features the Royal College of Art’s Sensory Materials Library, a growing database which includes physical and sensory properties to help designers with materials selection in the product design process

    Textile Robotic Interaction for Designer-Robot Collaboration

    Get PDF
    This late-breaking report describes lab-based robot experiments involving two robot arms scanning and interaction with a set of 12 novel sustainable materials programmed with handfeel gestures inspired by how designers evaluate textile materials. The aim of gathering this data is to spur research in robot perception of soft materials and to contribute towards human-robot collaborative design systems. The complete dataset including scanned images, video of interactions accompanied by the code to produce robot motion paths are made publically available
    • …
    corecore