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ABSTRACT 
This late-breaking report describes lab-based robot experiments 
involving two robot arms scanning and interaction with a set of 
12 novel sustainable materials programmed with handfeel gestures 
inspired by how designers evaluate textile materials. The aim of 
gathering this data is to spur research in robot perception of soft 
materials and to contribute towards human-robot collaborative 
design systems. The complete dataset including scanned images, 
video of interactions accompanied by the robot motion paths is 
available with code at https://github.com/rca-msrc/textile-robotic-
interaction-HRI2024. 

CCS CONCEPTS 
• Human-centered computing → Laboratory experiments; Col-
laborative interaction; • Applied computing → Arts and hu-
manities. 
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1 STUDY OVERVIEW 
This paper describes two robot experiments for scanning and record-
ing image-based and video data of textile materials, for the purpose 
of spurring research into the interactions of humans, textile and 
robotics. This ofers a designer more textile assessment through 
the use of robotics, with the aim being towards improving robotic 
perception of textile materials for application for designer-robotic 
collaboration. Our contribution towards this research is building a 
dataset of diferent textile materials for visual prediction of their 
properties, in particular the handfeel of textile materials [3]. 

2 RELATED LITERATURE 
Research into visually discriminating between a closed set of materi-
als, based on texture, is an established developed research area [4, 9] 
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material medium structure sub-structure 
ffe_01 Plant/Synthetic Woven Ribbed 
ffe_02 Plant Knitted Plain 
ffe_03 Plant Knitted Lace hole 
ffe_04 Plant Woven Basket 
ffe_05 Animal Woven Ribbed 
ffe_06 Plant Woven Twill 
ffe_07 Plant Woven Plain 
ffe_08 Plant Non-woven Composite 
ffe_09 Animal Knit Plain 
ffe_10 Plant Knit Plain 
ffe_11 Plant/Animal Knit Jacquard 
ffe_12 Plant Knit Plain 

Table 1: Fabric materials used in this study (more detailed 
properties in materials.csv in dataset) 

and has been applied to textiles [2, 6] and in classifying textile’s 
structure and properties visually [5]. Existing robotic-textile inter-
action research focused on predicting classes of textiles through 
tactile sensors [7, 8], or shape of the textiles through image-based 
techniques [10]). Predicting physical, subjective and sensory prop-
erties of materials through visual analysis of robotic interactions 
inspired by a designer’s handfeel gestures is an underexplored area 
which we aim to contribute towards with our experimental datasets. 

The rest of the paper describes the methods and set-up of the 
experiments with initial evaluation of the data gathered. Section 
3 describes the frst experiment’s methods of scanning textiles 
and Section 4 describes the second experiment’s methods handfeel 
experiments. Finally, Section 5 concludes with potential uses for 
the experiment’s data for the HRI community. The technical details 
of the scripts and used to run the robot experiments are available at 
https://github.com/rca-msrc/textile-robotic-interaction-HRI2024. 

3 ROBOTIC TEXTILE SCANNING 
Both experiments utilised two UFactory xArm71 robot arms, to 
interact with 12 sustainable fabric materials (Table 1). In the frst 
experiment, described in this section, one robot methodically image 
scanned a draped fabric (held by another robot arm as in Figure 1). 
The aim is to have the robot classifying the fabric while scanning, 
thus exploring the physical space of proximity to the fabric. 

3.1 Scanning Methods 
One robot holds the fabric in a static draped position. The other 
robot arm then follows a static pre-programmed path with a tablet 
device attach on its end-efector. The device runs an image ac-
quisition application that records time-stamped images at regular 
intervals (about 100ms). 

3.1.1 Defining the Path. Through manual and bespoke experimen-
tation, key-points were recorded around the draped fabric and using 
the xArm’s API2, a linear path was interpolated (at a given speed) 
for the robot to guide the image-recording app. 

1https://www.ufactory.cc/xarm-collaborative-robot/ 
2https://github.com/xArm-Developer/xArm-Python-SDK 

Figure 1: Robot scanning in-progress using tablet running 
bespoke image acquisition application (“center left” position) 

Positions were defned from the perspective of the camera appli-
cation, experimentally (see robot_calibration.ipynb notebook 
in the supplementary code). Four key-point positions were defned 
to interpolate between for the robot to achieve good scanning cov-
erage of the draped fabric: Top Center (where the camera was 
positioned pointing where the other robot held the fabric), Cen-
ter Center (camera positioned directly at the center of the fabric), 
Center Right, and Center Left (camera positioned on the right 
and left facing the center height of fabric). 

These four positions were defned for four levels of proximity 
to the fabric’s surface (roughly stepped by 5-10mm): close, mid, 
normal, far. With these positions defned, a path (an ordering 
of these positions) was defned (see the the scan.py script in the 
supplementary code). 

3.1.2 Running the Scan. Each of the 12 fabric materials (Table 1) 
were scanned. The scanning robot moved from path position to 
position at a set speed (50 from a range of 1 to 250), and at each 
position the robot would pause for 1 second before moving to the 
next position. For each scan, the tablet-based image recording app 
recorded images at full resolution which was 1072x1072 pixels and 
at an input resolution 320x320 pixels which is a cropped region 
from the center of the image. 

In addition, while scanning, the robots recorded their positions 
(broadcast from a network socket from each of the robot arms). 
These position frames were recorded at roughly 100ms interface 
(using the report.py script in the supplementary code). Since 
there are two robot arms, for each scan both robot’s positions were 
recorded (the fabric holding robot was static for the entire scan). In 
order to mark-up the scanning routine and align with the robots’ 
position, timestamped markers were recorded as the robot moved 
from position to position. 

Finally, a top-down mobile camera recorded each experiment, 
providing an overhead video of the scan. 
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3.2 Scanning Results 
3.2.1 Running the Experiments. Each fabric had at least 1 scan. 
Fabric 12 (ffe_12) had issues with the frst scan, and thus a second 
scan was recorded, and thus there are two sets of data for that fabric. 
Fabric 3 (ffe_03) ended up being partially scanned twice (due to 
performance issues with image acquisition application). 

3.2.2 Evaluation of Images. In total, 50,692 images were gathered 
for the 12 fabrics (median of 3637 images per fabric). As the robot 
arm and the image scanning application was decoupled, the arm 
moved during the scanning process. This resulted in a number of 
images experiencing motion blur. One rough metric for evaluating 
blurriness is calculating the variance of the Laplacian for the image’s 
pixel values (less hard edges in an image results in a lower variance) 
[1]. 

Figure 2: Comparison of – (a.) clear (score 74.7) image (lef) 
and (b.) blurry (score 55.3) image (right). 

Figure 2 shows a comparison of a clear and a blurry image for the 
same fabric, Fabric 9 (ffe_09), with their blurriness scores which 
are relative for each fabric material. Figure 3 shows the distribution 
of all the images for that fabric (of which 72% of the images are 
considered blurry, below threshold of 55). This indicates a tighter 
coupling of image scanning and robotic motion is necessary to 
reduce the blurriness of the scanned image dataset (see the blurri-
ness_analysis.ipynb notebook in the supplementary code for further 
analysis) 

4 ROBOTIC HANDFEEL EXPERIMENT 
This experiment was inspired by videos of fabric handling used by 
fabric suppliers to convey the handfeel of the material. As opposed 
to displaying static images of their fabrics, a video 3 showing a 
standard set of gestures of a hand interacting with the fabrics is dis-
played. In this experiment, we program two robot arms to replicate 
a very simple gesture of two thumbs rubbing the surface of a fabric. 
This is recorded by video from two perspectives, a top-down and a 
side-angle view. 

4.1 Method 
Two robot arms are positioned symmetrically over a work area 
(Figure 4a.). The work area is roughly 20cm by 30cm and the surface 

3https://www.upwhk.com/shop/commodity/1140 

Figure 3: Histogram of the blurriness scores (variance of 
Laplacian) for all of the images scanned for Fabric 9 (ffe_09). 

Figure 4: (a.) Top-down view of handfeel set-up with 3-D 
printed “thumb”, (b.) interacting with the fabric, (c.) profle 
showing both sides of the “thumb” 

is a hard packing foam, which allows the robot to press into the 
fabric and with some give. 

The robots interact with the fabric with a static end-efector 
“thumb”, made of 3D printed ABS plastic, where it is rotated to 
roughly 45 degrees from the surface of the fabric and moves in a 
“pulling” motion along various axes (Figure 4b.). Because the aim it 
to replicated a “pulling apart” gesture, both robot arms move their 
thumbs in synchronous and symmetrical motions. 
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The thumbs have two sides to them, and the gestures are repeated 
for each side. One side is the “rounded” side of the thumb, and the 
other is a “sharp” nail side of the thumb (Figure 4c.). In early tests 
we found the sharp side to have more pull on the fabric, and to 
create a variation of interactions of the thumb with the fabric, ran 
experiments with both sides. 

4.1.1 Defining the Gestures. The robot arms conducted three dif-
ferent types of “pulling” motions on the fabric (thumbs starting at 
ca. 5 cm apart), each along 3 axes: X, Y, XY (in a diagonal direction). 
For directional fabrics, this mean that the motion was applied in 
both the warp and weft direction, as well as a 45 degree diagonal. 

For each “pulling” motion, the robot arms applied increasing 
pressure of the thumb into the fabric material, determined through 
initial experimentation. This was done by setting the Z height of the 
thumb onto the fabric from barely grazing the surface of the fabric, 
and linearly increasing the Z position of the thumbs in multiple 
passes. 

4.1.2 Defining the Experiment. All 12 fabrics were tested twice in 
this experiment – one for each side of the fabric, designating one 
side A and one side B. The fabrics were pinned down to the foam 
surface of the work-area at each corner and side. For each fabric, 
the pulling motions are applied for 5 increasing levels of pressure, 
repeated for both ends (“round” and “sharp”) of the thumb. 

4.2 Handfeel Results 
4.2.1 Running the Experiments. Each fabric had both sides evalu-
ated with the robotic handfeel gesture, with one exception. Fabric 
8 (ffe_08), a non-woven harder composite material, began to be 
scratched severely under increasing levels of pressure, thus the 
motions were cut of early to prevent destroying of the material. 

Figure 5: Screenshot close-up from video recording of the 
robot thumb pulling Fabric 9 (ffe_09) in an analogous motion 
as in supplier video. 

4.2.2 Visual evaluation. Visually comparing the resulting top-down 
video (Figure 5 shows a screenshot in mid-handfeel motion) with 
the video produced by the supplier 4 indicates similar displacement 
of the knit structures of Fabric 9 (ffe_09) (which is the only fabric 
for which supplier videos are available). However, in the supplier 
video, the thumb gesture is accompanied by an index fnger pinch-
ing motion which further expands the knit, which is an opportunity 
for future improvement in robotic manipulation. 

5 CONCLUSIONS AND FUTURE WORK 
The intention of this dataset is a preliminary exploration where a 
robot interacts with textile materials. The ultimate intention being 
to promote a collaborative system for designers to work with soft 
materials — notably textile materials for fashion and textile design-
ers. In particular, robotic systems to help assess sensory properties 
of textile materials to help scale material libraries for designers. 
The data collected during these studies should be visually analysed 
further to gain a greater understanding of each textile’s behaviour 
under the same controlled manipulation. Measuring stitch distor-
tion and comparing warp and weft behaviours when handled, would 
suggest richer tactile data compared to still images. 

Potential uses of these datasets of images and videos would 
be to train a robotic system to optimise motion trajectories for 
successful assessment and identifcation of textile materials and 
their properties. In particular, the motion paths in this dataset are 
statically defned, so this dataset might contribute towards dynamic 
path planning for a robot to assess a material. 

More broadly, successful assessment of textile materials provides 
a robotic system with more information on how to better approach 
and manipulate these materials. Soft materials, such as textiles, are 
challenging for a robot system to grip and manipulate as opposed 
to rigid materials. For these tasks, allowing a robot to predict the 
type of material helps it select a better policy for handling and 
manipulating it. Future work would be to understand and predict 
sensory properties of textile materials through physical analysis 
with robots. Such data would also be useful for designers when 
sourcing materials online, especially when comparing like for like 
alternatives. 
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