24 research outputs found

    Physiological Characterization of Cut-to-Cut Yield Variations of Alfalfa Genotypes under Controlled Greenhouse Conditions

    Get PDF
    In a temperate region, alfalfa (Medicago sativa) crops are usually harvested 3-6 times per annum. The biomass yields of first and second cuts in the spring are generally the high-est. However, in subsequent cuts the biomass yields decline, with the final 1 or 2 cuts producing the lowest yields (Wang et al. 2009). This seasonal reduction in alfalfa biomass yields could be associated with prevailing changes in environmental factors such as rainfall and heat stress or due to biological characteristics of alfalfa crop itself. In this study, alfalfa was grown under controlled greenhouse conditions with suitable temperature, light, water and nutrient supply to determine the driving force in cut-to-cut biomass yield variations among alfalfa genotypes

    Effect of time of harvest on the incidence of Fusarium spp. in kernels of silage corn

    Get PDF
    The effect of time of harvest (at 75, 50 and 25% of milkline) on the incidence of kernel-borne Fusarium spp. was examined in four silage corn (Zea mays) hybrids (MAIZEX Leafy 4, NK BRAND Enerfeast 1, PIONEER 37M81 and MYCOGEN TMF94) in Ottawa, Ontario, in 2001 and 2002. Eleven Fusarium species were isolated over the 2 yr. Fusarium subglutinans was the dominant species recovered from 28.8% of the kernels. Other frequently isolated species included F. oxysporum (2.6%), F. graminearum (2.5%), F. proliferatum (0.3%) and F. sporotrichioides (0.2%). Trace amounts (< 0.1%) of the remaining six species, F. avenaceum, F. crookwellense, F. culmorum, F. equiseti and F. solani, were recovered from the kernels. When the kernels were harvested at 75, 50 and 25% of milkline, the incidence of F. subglutinans increased from 20.9 to 26.7 and to 38.7%, respectively; that of F. graminearum increased from 1.7 to 2.9 and to 3.1%; and for the total of the five main Fusarium species it increased from 28.7 to 32.2 and to 42.3%. Incidence of the other species was not affected by harvesting date. Of the four silage corn hybrids, NK BRAND Enerfeast1 had a significantly lower incidence of Fusarium species in kernels than the other hybrids, indicating a genotypic variation in resistance to kernel-borne infection by Fusarium species.L’effet de trois temps de récolte, correspondant à 75, 50 et 25 % de l’état laiteux, sur l’incidence des espèces de Fusarium a été étudié chez les grains de quatre hybrides de maïs (Zea mays) ensilage (MAIZEX Leafy 4, NK BRAND Enerfeast 1, PIONEER 37M81 et MYCOGEN TMF94) en 2001 et 2002 à Ottawa, en Ontario. Onze espèces de Fusarium ont été isolées pendant ces deux années. Le F. subglutinans a été l’espèce dominante, trouvée sur 28,8 % des grains. Les autres espèces détectées ont été les F. oxysporum (2,6 %), F. graminearum (2,5 %), F. proliferatum (0,3 %) et F. sporotrichioides (0,2 %). Des traces (< 0,1 %) des six autres espèces, les F. avenaceum, F. crookwellense, F. culmorum, F. equiseti et F. solani, ont aussi été détectées sur les grains. L’incidence du F. subglutinans a augmenté respectivement de 20,9 à 26,7 puis à 38,7 % en fonction du temps de récolte (75, 50 et 25 % de l’état laiteux), tandis qu’elle a augmenté de 1,7 à 2,8 puis à 3,1 % pour le F. graminearum et de 28,7 à 32,2 puis à 42,3 % pour les cinq espèces principales confondues. L’incidence des autres espèces n’a pas été affectée par les dates de récolte. Parmi les quatre hybrides à l’essai, l’hybride commercial NK BRAND Enerfeast1 a eu la plus basse incidence d’espèces de Fusarium dans le grain, ce qui indique qu’il existe une variation génotypique de la résistance des grains aux infections causées par les espèces de Fusarium

    C-reactive protein levels could be a prognosis predictor of prostate cancer: A meta-analysis

    Get PDF
    BackgroundThe relationship between the C-reactive protein (CRP) and prognosis in prostate cancer (PCa) has been widely discussed over the past few years but remains controversial.Material and methodsIn our meta-analysis, we searched 16 reliable studies in the PubMed, Embase, and Cochrane Library databases. Otherwise, we have successfully registered on the INPLASY. We also performed random- and fixed-effects models to evaluate the hazard ratio (HR) and 95% confidence interval (CI), respectively.ResultThe result of our meta-analysis shows that elevated CRP levels were related to worse overall survival (OS) (HR = 1.752, 95% CI = 1.304–2.355, p = 0.000), cancer-specific survival (CSS) (HR =1.823, 95%CI = 1.19-2.793, P = 0.006), p = 0.026), and progression-free survival (PFS) (HR = 1.663, 95% CI = 1.064–2.6, p = 0.026) of PCa patients. There was significant heterogeneity, so we performed a subgroup analysis according to the staging of the disease and found the same result. Furthermore, the heterogeneity was also reduced, and no statistical significance.ConclusionOur study shows that the level of CRP could reflect the prognosis of prostate cancer patients. We find that PCa patients with high levels of CRP often have worse OS, CSS, and PFS, although the stages of the patients’ disease are different. More studies are needed to verify this idea

    The apical development, and the effects of chlormequat and ethephon on the development, physiology and yield of spring barley /

    No full text
    Plant growth regulator(s) (PGR) can be used as lodging inhibitors and/or yield promoters for spring barley (Hordeum vulgare L.). From 1987 to 1990 four field experiments were conducted to monitor barley main-stem apical development and to determine the effects of chlormequat (CCC) and ethephon on the development, physiology and yield of spring barley. Our data provide a description of barley apical development and the general pattern of leaf and spikelet primordium production under field conditions. In general, PGR treatment reduced the apical dominance of dominant sinks allowing the survival and greater development of more subordinate sinks. Early application of either CCC or ethephon retarded development of the main-stem apex from shortly after application to the awn elongation stage and reduced the number of aborted spikelet primordia, thus increasing the potential number of grains per spike and sometimes grain yield. Ethephon applied at ZGS 39 reduced plant height and lodging. Early application (ZGS 30) of ethephon, alone or in combination with CCC increased the number of spikes msp−2, sp{-2}, but not grain yield. The number of spike-bearing shoots per unit area or per plant was increased by early PGR treatment, primarily by enhancement of tiller number rather than tiller survival. Early application of CCC or ethephon to spring barley is not justified, and caution must be taken when using ethephon at the currently recommended rate and stage for lodging control. Post-anthesis application of ethephon can efficiently enhance grain fill and yield of spring barley

    Microplate assay for boron analysis in soil and plant tissue

    No full text
    The boron concentration in soil extracts and ashed plant tissue was quantified with a rapid and reproducible microplate assay. The microsized Azomethine-H method required adjustment to reduce pH and chemical interferences in soil and plant tissue samples. Microplate spectrophotometry permits replication, quality control and is suitable for high throughput analysis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Changes in leaf nitrogen and phosphorus, photosynthesis, respiration, growth and resource use efficiency of a rapeseed cultivar as affected by drought and high temperature

    No full text
    The objective of this study was to explore the changes in leaf nitrogen (N) and phosphorus (P) content, physiological processes, growth, and resource-use efficiency in a rapeseed cultivar under drought and (or) high temperatures. The two-wk-old plants were grown under controlled growth chamber conditions and subjected to individual or combined water (well-irrigated, 88% ± 4% field capacity vs. drought, 46% ± 5% field capacity) and temperature (control, 23 °C/17 °C vs. high temperatures, 26 °C/25 °C) regimes for 10 d. The measured response parameters were [N], [P], and their total content in leaves, photosynthetic rate (Asat), stomatal conductance (gs), intercellular CO2 concentration (Ci), mitochondrial respiration (R), intrinsic water use efficiency (WUEi), photosynthetic N use efficiency (PNUE), relative growth rate of the root (RGRr) and shoot (RGRs), leaf area, and dry matter accumulation in the plant. Drought significantly decreased [N], [P], and their total content in leaves, Asat, gs, Ci, RGRr, RGRs, leaf area, dry matter accumulation in the root, shoot, and whole plant, and PNUE, but significantly increased R and WUEi. Drought-induced reduction in growth or Asat was mainly attributed to a decreased Ci due to stomatal closure, while reduction in gs and leaf area appeared to be a drought-adaptive mechanism. High temperature stress alone had no negative impact on physiological and growth parameters, indicating an enhanced thermal stability of the cultivar, which was diminished at combined drought and high temperature stresses. We therefore conclude that the thermal stability of the cultivar in terms of growth was compromised under simultaneous occurrence of drought and high temperature stresses.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Soil nitrogen dynamics in canola agroecosystems of eastern Canada

    No full text
    Canola (Brassica napus L.) is a nitrogen (N)-demanding crop, so tissue N analysis should be related to soil N supply. We evaluated canola N uptake in relation to soil N pools in plots receiving 0, 50, 100 and 150 kg N ha-1 from urea at three sites in eastern Canada in 2012. Soil N pools varied significantly at the rosette, flowering, pod filling and maturity stages, but responded less predictably to urea. Canola N uptake was inconsistently related to soil N pools and urea input. This confirms the importance of site-specific N fertilizer management when growing canola in eastern Canada.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem

    No full text
    Degraded soils (including salinized, eroded, and low organic matter) resulting from natural and human effects are universal in arid and semi-arid regions all over the world. Bentonite and humic acid (BHA) are increasingly being tested to remediate these degraded lands, with potential benefits on crop production and soil health. A field study was conducted to quantify the effects of BHA application at six rates (0, 6, 12, 18, 24, and 30 Mg ha−1) on (i) dynamic changes in soil properties and (ii) oat crop productivity parameters in a dryland farming ecosystem. The specific objective of this paper was to determine the residual effects four to five years after a one-time BHA application on soil health and crop performance. The findings demonstrated that with the increasing rates of one-time BHA application, soil profile water storage displayed a piecewise linear plus plateau increase, whereas soil electrical conductivity, pH, and bulk density were all reduced significantly (p −1. In turn, this boosted soil nutrient turnover, leading to a 40% higher soil available P. Compared with the control treatment, application of BHA at the estimated optimum rate (roughly 24 Mg ha−1) increased grain yield by 20%, protein yield by 62%, water use efficiency by 41%, and partial factor productivity of N by 20%. The results of this study indicated for the first time that a one-time BHA application would be a new and effective strategy to combat land degradation and drought, and promote a sustainable soil micro-ecological environment in dryland agroecosystems under a varying climate scenario
    corecore