252,511 research outputs found
Second Life as a Learning and Teaching Environment for Digital Games Education
Previous studies show that online virtual worlds can contribute to the social aspects of distance learning, improve student engagement, and enhance students’ experience as a whole [4]; [3]. This paper reviews previous research of using online virtual worlds in teaching and learning,
compares Second Life with traditional classroom sessions and the Blackboard, and discusses the benefits and problems of using virtual environments in the post-sixteen education
and how they affect students’ learning. It also reports a study of using Second Life as an educational environment for teaching games design at undergraduate level, and investigates the impacts and implications of online virtual
environments on learning and teaching processes and their application to digital games education. The sample was 27 first year students of the Computer Games Modelling and Animation course. Students’ views on using Second Life for
learning and teaching were collected through a feedback questionnaire. The results suggest that virtual learning environments like Second Life can be exploited as a motivational learning tool. However, problems such as identify issues and lacking of role markers may change student behaviour in virtual classroom. We discuss this
phenomenon and suggest ways to avoid it in the preparation stage
Dynamics of ligand substitution in labile cobalt complexes resolved by ultrafast T-jump
Ligand exchange of hydrated metal complexes is common in chemical and biological systems. Using the ultrafast T-jump, we examined this process, specifically the transformation of aqua cobalt (II) complexes to their fully halogenated species. The results reveal a stepwise mechanism with time scales varying from hundreds of picoseconds to nanoseconds. The dynamics are significantly faster when the structure is retained but becomes rate-limited when the octahedral-to-tetrahedral structural change bottlenecks the transformation. Evidence is presented, from bimolecular kinetics and energetics (enthalpic and entropic), for a reaction in which the ligand assists the displacement of water molecules, with the retention of the entering ligand in the activated state. The reaction time scale deviates by one to two orders of magnitude from that of ionic diffusion, suggesting the involvement of a collisional barrier between the ion and the much larger complex
Spectral Theory of Time Dispersive and Dissipative Systems
We study linear time dispersive and dissipative systems. Very often such
systems are not conservative and the standard spectral theory can not be
applied. We develop a mathematically consistent framework allowing (i) to
constructively determine if a given time dispersive system can be extended to a
conservative one; (ii) to construct that very conservative system -- which we
show is essentially unique. We illustrate the method by applying it to the
spectral analysis of time dispersive dielectrics and the damped oscillator with
retarded friction. In particular, we obtain a conservative extension of the
Maxwell equations which is equivalent to the original Maxwell equations for a
dispersive and lossy dielectric medium.Comment: LaTeX, 57 Pages, incorporated revisions corresponding with published
versio
Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach
An extension to the classical FPV model is developed for transcritical
real-fluid combustion simulations in the context of finite volume, fully
compressible, explicit solvers. A double-flux model is developed for
transcritical flows to eliminate the spurious pressure oscillations. A hybrid
scheme with entropy-stable flux correction is formulated to robustly represent
large density ratios. The thermodynamics for ideal-gas values is modeled by a
linearized specific heat ratio model. Parameters needed for the cubic EoS are
pre-tabulated for the evaluation of departure functions and a quadratic
expression is used to recover the attraction parameter. The novelty of the
proposed approach lies in the ability to account for pressure and temperature
variations from the baseline table. Cryogenic LOX/GH2 mixing and reacting cases
are performed to demonstrate the capability of the proposed approach in
multidimensional simulations. The proposed combustion model and numerical
schemes are directly applicable for LES simulations of real applications under
transcritical conditions.Comment: 55th AIAA Aerospace Sciences Meeting, Dallas, T
Information processing with topologically protected vortex memories in exciton-polariton condensates
We show that in a non-equilibrium system of an exciton-polariton condensate,
where polaritons are generated from incoherent pumping, a ring-shaped pump
allows for stationary vortex memory elements of topological charge or
. Using simple potential guides we can choose whether to copy the same
charge or invert it onto another spatially separate ring pump. Such
manipulation of binary information opens the possibility of a new type
processing using vortices as topologically protected memory components
The kindest cut: Enhancing the user experience of mobile tv through adequate zooming
The growing market of Mobile TV requires automated adaptation of standard TV footage to small size displays. Especially extreme long shots (XLS) depicting distant objects can spoil the user experience, e.g. in soccer content. Automated zooming schemes can improve the visual experience if the resulting footage meets user expectations in terms of the visual detail and quality but does not omit valuable context information. Current zooming schemes are ignorant of beneficial zoom ranges for a given target size when applied to standard definition TV footage. In two experiments 84 participants were able to switch between original and zoom enhanced soccer footage at three sizes - from 320x240 (QVGA) down to 176x144 (QCIF). Eye tracking and subjective ratings showed that zoom factors between 1.14 and 1.33 were preferred for all sizes. Interviews revealed that a zoom factor of 1.6 was too high for QVGA content due to low perceived video quality, but beneficial for QCIF size. The optimal zoom depended on the target display size. We include a function to compute the optimal zoom for XLS depending on the target device size. It can be applied in automatic content adaptation schemes and should stimulate further research on the requirements of different shot types in video coding
Measurement and Analysis of Multiband Bistatic and Monostatic Radar Signatures of Wind Turbines
This paper presents the results of recent measurements taken with two radar systems to measure the simultaneous monostatic and bistatic signature of wind turbines, at S-band and X-band. Coherent monostatic and bistatic data was collected with the University College London (UCL) NetRAD 2.4 GHz radar, and the Cranfield University CW radar operating at X-band. This initial analysis shows the bistatic Doppler signature of wind turbines and informs on the key differences seen at modest bistatic angles. Polarimetric variations are also analysed via data gathered using co-polarised VV and HH and cross-polarised VH components
Explicit Solution of the Time Domain Volume Integral Equation Using a Stable Predictor-Corrector Scheme
An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements
Predictions of Neutrino Mixing Angles in a T'Model
Flavor symmetry () where is the binary tetrahedral
group predicts for neutrino mixing angles and, with one phenomenological input, provides
upper and lower bounds on both and . The predictions
arise from the deviation of the Cabibbo angle from its
lowest-order value and from the
mechanism which relates mixing of neutrinos to
mixing of quarks.Comment: Typos. Reference adde
- …