15 research outputs found

    Fracture of jammed colloidal suspensions

    Get PDF
    Concentrated colloidal suspensions display dramatic rises in viscosity, leading to jamming and granulation, with increasing shear rate. It has been proposed that these effects result from inter particle friction, as lubrication forces are overcome. This suggests the jamming of concentrated colloidal suspensions should exhibit some shared phenomenology with macroscopic granular systems where friction leads to two different types of jammed state. Here we show that transient rheological measurements can be used to probe the processes of granulation in concentrated colloidal suspensions. Our results support the idea that frictional contacts are created between jammed particles. The jamming behaviour displays two qualitatively different regimes separated by a critical strain rate with qualitatively different types of fracture/break up behaviour. In the lower strain rate regime, it is found that vibrations can be used to control jamming and granulation, resulting in a flowable fluid

    Highly evolved grains

    No full text

    Reconfigurable and programmable origami dielectric elastomer actuators with 3D shape morphing and emissive architectures

    No full text
    Soft actuators with the capability to generate programmable and reconfigurable motions without the use of complicated and rigid infrastructures are of great interest for the development of smart, interactive, and adaptive soft electronic systems. Here, we report a new strategy to achieve a transparent and reconfigurable actuator by using a dielectric elastomer actuator (DEA), which provides mechanical strains under electrical bias, integrated with origami ethyl cellulose (EC) paper that “instructs” the shape changes of the actuator. The actuator can be reconfigured and multiple mechanical motions can be programmed in the device by creating crease patterns that induce variations in the local stiffness to direct the actuations. With the versatile design and fabrication approach, a light emission device with dynamic shape changes was demonstrated.National Research Foundation (NRF)Published versionThis work was financially supported by the National Research Foundation Competitive Research Programme (Award No. NRF-CRP-13-2014-02) and the NRF Investigatorship (Award No. NRF-NRFI2016-05)
    corecore