60 research outputs found

    The DNA Repair Gene APE1 T1349G Polymorphism and Risk of Gastric Cancer in a Chinese Population

    Get PDF
    Background: Apurinic/apyrimidinic endonuclease 1 (APE1) has a central role in the repair of apurinic apyrimidic sites through both its endonuclease and its phosphodiesterase activities. A common APE1 polymorphism, T1349G (rs3136820), was previously shown to be associated with the risk of cancers. Objective: We hypothesized that the APE1 T1349G polymorphism is also associated with risk of gastric cancer. Methods: In a hospital-based case-control study of 338 case patients with newly diagnosed gastric cancer and 362 cancerfree controls frequency-matched by age and sex, we genotyped the T1349G polymorphism and assessed its associations with risk of gastric cancer. Results: Compared with the APE1 TT genotype, individuals with the variant TG/GG genotypes had a significantly increased risk of gastric cancer (odds ratio = 1.69, 95 % confidence interval = 1.19–2.40), which was more pronounced among subgroups of aged #60 years, male, ever smokers, and ever drinkers. Further analyses revealed that the variant genotypes were associated with an increased risk for diffuse-type, low depth of tumor infiltration (T1 and T2), and lymph node metastasis gastric cancer. Conclusions: The APE1 T1349G polymorphism may be a marker for the development of gastric cancer in the Chinese population. Larger studies are required to validate these findings in diverse populations

    The association of APE1 −656T > G and 1349 T > G polymorphisms and cancer risk: a meta-analysis based on 37 case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>APE1 (apurinic/apyrimidinic endonuclease 1) is an important DNA repair protein in the base excision repair pathway. Polymorphisms in <it>APE1 </it>have been implicated in susceptibility to cancer; however, results from the published studies remained inconclusive. The objective of this study was to conduct a meta-analysis investigating the association between polymorphisms in <it>APE1 </it>and the risk for cancer.</p> <p>Methods</p> <p>The PubMed and Embase databases were searched for case-control studies published up to June, 2011 that investigated <it>APE1 </it>polymorphisms and cancer risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations.</p> <p>Results</p> <p>Two polymorphisms (−656 T > G, rs1760944 and 1349 T > G, rs1130409) in 37 case-control studies including 15, 544 cancer cases and 21, 109 controls were analyzed. Overall, variant genotypes (GG and TG/GG) of −656 T > G polymorphism were associated with significantly decreased cancer risk in homozygote comparison (OR = 0.81, 95%CI: 0.67-0.97), dominant model comparison (OR = 0.89, 95%CI: 0.81-0.97) and recessive model comparison (OR = 0.90, 95%CI: 0.82-0.98), whereas the 1349 T > G polymorphism had no effects on overall cancer risk. In the stratified analyses for −656 T > G polymorphism, there was a significantly decreased risk of lung cancer and among Asian populations.</p> <p>Conclusions</p> <p>Although some modest bias could not be eliminated, the meta-analysis suggests that <it>APE1 −</it>656 T > G polymorphism has a possible protective effect on cancer risk particularly among Asian populations whereas 1349 T > G polymorphism does not contribute to the development of cancer.</p

    Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines

    Get PDF
    AimsModulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy.MethodsAn industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses.ResultsSeveral specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines.ConclusionsOur study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma

    A Regulatory Role for NBS1 in Strand-Specific Mutagenesis during Somatic Hypermutation

    Get PDF
    Activation-induced cytidine deaminase (AID) is believed to initiate somatic hypermutation (SHM) by deamination of deoxycytidines to deoxyuridines within the immunoglobulin variable regions genes. The deaminated bases can subsequently be replicated over, processed by base excision repair or mismatch repair, leading to introduction of different types of point mutations (G/C transitions, G/C transversions and A/T mutations). It is evident that the base excision repair pathway is largely dependent on uracil-DNA glycosylase (UNG) through its uracil excision activity. It is not known, however, which endonuclease acts in the step immediately downstream of UNG, i.e. that cleaves at the abasic sites generated by the latter. Two candidates have been proposed, an apurinic/apyrimidinic endonuclease (APE) and the Mre11-Rad50-NBS1 complex. The latter is intriguing as this might explain how the mutagenic pathway is primed during SHM. We have investigated the latter possibility by studying the in vivo SHM pattern in B cells from ataxia-telangiectasia-like disorder (Mre11 deficient) and Nijmegen breakage syndrome (NBS1 deficient) patients. Our results show that, although the pattern of mutations in the variable heavy chain (VH) genes was altered in NBS1 deficient patients, with a significantly increased number of G (but not C) transversions occurring in the SHM and/or AID targeting hotspots, the general pattern of mutations in the VH genes in Mre11 deficient patients was only slightly altered, with an increased frequency of A to C transversions. The Mre11-Rad50-NBS1 complex is thus unlikely to be the major nuclease involved in cleavage of the abasic sites during SHM, whereas NBS1 might have a specific role in regulating the strand-biased repair during phase Ib mutagenesis

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF
    • …
    corecore