19 research outputs found

    The Unreasonable Effectiveness of Encoder-Decoder Networks for Retinal Vessel Segmentation

    Full text link
    We propose an encoder-decoder framework for the segmentation of blood vessels in retinal images that relies on the extraction of large-scale patches at multiple image-scales during training. Experiments on three fundus image datasets demonstrate that this approach achieves state-of-the-art results and can be implemented using a simple and efficient fully-convolutional network with a parameter count of less than 0.8M. Furthermore, we show that this framework - called VLight - avoids overfitting to specific training images and generalizes well across different datasets, which makes it highly suitable for real-world applications where robustness, accuracy as well as low inference time on high-resolution fundus images is required

    EEG-based Hypo-vigilance detection using convolutional neural network

    Get PDF
    National audienceHypo-vigilance detection is becoming an important active research areas in the biomedical signal processing field. For this purpose, electroencephalogram (EEG) is one of the most common modalities in drowsiness and awakeness detection. In this context, we propose a new EEG classification method for detecting fatigue state. Our method makes use of a and awakeness detection. In this context, we propose a new EEG classification method for detecting fatigue state. Our method makes use of a Convolutional Neural Network (CNN) architecture. We define an experimental protocol using the Emotiv EPOC+ headset. After that, we evaluate our proposed method on a recorded and annotated dataset. The reported results demonstrate high detection accuracy (93%) and indicate that the proposed method is an efficient alternative for hypo-vigilance detection as compared with other methods

    LDA-based term profiles for expert finding in a political setting

    Get PDF
    A common task in many political institutions (i.e. Parliament) is to find politicians who are experts in a particular field. In order to tackle this problem, the first step is to obtain politician profiles which include their interests, and these can be automatically learned from their speeches. As a politician may have various areas of expertise, one alternative is to use a set of subprofiles, each of which covers a different subject. In this study, we propose a novel approach for this task by using latent Dirichlet allocation (LDA) to determine the main underlying topics of each political speech, and to distribute the related terms among the different topic-based subprofiles. With this objective, we propose the use of fifteen distance and similarity measures to automatically determine the optimal number of topics discussed in a document, and to demonstrate that every measure converges into five strategies: Euclidean, Dice, Sorensen, Cosine and Overlap. Our experimental results showed that the scores of the different accuracy metrics of the proposed strategies tended to be higher than those of the baselines for expert recommendation tasks, and that the use of an appropriate number of topics has proved relevant.This work has been funded by the Spanish Ministerio de Economı́a y Competitividad under projects TIN2016-77902-C3-2-P and PID2019-106758GB-C31, and the European Regional Development Fund (ERDF-FEDER)
    corecore