574 research outputs found

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    A markov classification model for metabolic pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper considers the problem of identifying pathways through metabolic networks that relate to a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built using information specific to each path and combined into an ensemble prediction for the response.</p> <p>Results</p> <p>We compared the performance of HME3M with logistic regression and support vector machines (SVM) for both simulated pathways and on two metabolic networks, glycolysis and the pentose phosphate pathway for <it>Arabidopsis thaliana</it>. We use AltGenExpress microarray data and focus on the pathway differences in the developmental stages and stress responses of <it>Arabidopsis</it>. The results clearly show that HME3M outperformed the comparison methods in the presence of increasing network complexity and pathway noise. Furthermore an analysis of the paths identified by HME3M for each metabolic network confirmed known biological responses of <it>Arabidopsis</it>.</p> <p>Conclusions</p> <p>This paper clearly shows HME3M to be an accurate and robust method for classifying metabolic pathways. HME3M is shown to outperform all comparison methods and further is capable of identifying known biologically active pathways within microarray data.</p

    Differential expression of microRNAs during fiber development between fuzzless- lintless mutant and its wild-type allotetraploid cotton

    Get PDF
    Cotton is one of the most important textile crops but little is known how microRNAs regulate cotton fiber development. Using a well-studied cotton fiberless mutant Xu-142-fl, we compared 54 miRNAs for their expression between fiberless mutant and its wildtype. In wildtype Xu-142, 26 miRNAs are involved in cotton fiber initiation and 48 miRNAs are related to primary wall synthesis and secondary wall thickening. Thirty three miRNAs showed different expression in fiber initiation between Xu-142 and Xu- 142-fl. These miRNAs potentially target 723 protein-coding genes, including transcription factors, such as MYB, ARF, and LRR. ARF18 was newly predicted targets of miR160a, and miR160a was expressed at higher level in −2DPA of Xu-142-fl compared with Xu-142. Furthermore, the result of Gene Ontology- based term classification (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows that miRNA targets were classified to 222 biological processes, 64 cellular component and 42 molecular functions, enriched in 22 KOG groups, and classified into 28 pathways. Together, our study provides evidence for better understanding of miRNA regulatory roles in the process of fiber development, which is helpful to increase fiber yield and improve fiber quality

    Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>R </it>locus controls the color of pigmented soybean (<it>Glycine max</it>) seeds. However information about its control over seed coat biochemistry and gene expressions remains limited. The seed coats of nearly-isogenic black (<it>iRT</it>) and brown (<it>irT</it>) soybean (<it>Glycine max</it>) were known to differ by the presence or absence of anthocyanins, respectively, with genes for only a single enzyme (anthocyanidin synthase) found to be differentially expressed between isolines. We recently identified and characterized a UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase (<it>UGT78K1</it>) from the seed coat of black (<it>iRT</it>) soybean with the aim to engineer seed coat color by suppression of an anthocyanin-specific gene. However, it remained to be investigated whether <it>UGT78K1 </it>was overexpressed with anthocyanin biosynthesis in the black (<it>iRT</it>) seed coat compared to the nearly-isogenic brown (<it>irT</it>) tissue.</p> <p>In this study, we performed a combined analysis of transcriptome and metabolite data to elucidate the control of the R locus over seed coat biochemistry and to identify pigment biosynthesis genes. Two differentially expressed late-stage anthocyanin biosynthesis isogenes were further characterized, as they may serve as useful targets for the manipulation of soybean grain color while minimizing the potential for unintended effects on the plant system.</p> <p>Results</p> <p>Metabolite composition differences were found to not be limited to anthocyanins, with specific proanthocyanidins, isoflavones, and phenylpropanoids present exclusively in the black (<it>iRT</it>) or the brown (<it>irT</it>) seed coat. A global analysis of gene expressions identified <it>UGT78K1 </it>and 19 other anthocyanin, (iso)flavonoid, and phenylpropanoid isogenes to be differentially expressed between isolines. A combined analysis of metabolite and gene expression data enabled the assignment of putative functions to biosynthesis and transport isogenes. The recombinant enzymes of two genes were validated to catalyze late-stage steps in anthocyanin biosynthesis <it>in vitro </it>and expression profiles of the corresponding genes were shown to parallel anthocyanin biosynthesis during black (<it>iRT</it>) seed coat development.</p> <p>Conclusion</p> <p>Metabolite composition and gene expression differences between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats are far more extensive than previously thought. Putative anthocyanin, proanthocyanidin, (iso)flavonoid, and phenylpropanoid isogenes were differentially-expressed between black (<it>iRT</it>) and brown (<it>irT</it>) seed coats, and <it>UGT78K2 </it>and <it>OMT5 </it>were validated to code UDP-glycose:flavonoid-3-<it>O</it>-glycosyltransferase and anthocyanin 3'-<it>O</it>-methyltransferase proteins <it>in vitro</it>, respectively. Duplicate gene copies for several enzymes were overexpressed in the black (<it>iRT</it>) seed coat suggesting more than one isogene may have to be silenced to engineer seed coat color using RNA interference.</p

    Acute effects of remote ischemic preconditioning on cutaneous microcirculation - a controlled prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Therapeutic strategies aiming to reduce ischemia/reperfusion injury by conditioning tissue tolerance against ischemia appear attractive not only from a scientific perspective, but also in clinics. Although previous studies indicate that remote ischemic intermittent preconditioning (RIPC) is a systemic phenomenon, only a few studies have focused on the elucidation of its mechanisms of action especially in the clinical setting. Therefore, the aim of this study is to evaluate the acute microcirculatory effects of remote ischemic preconditioning on a distinct cutaneous location at the lower extremity which is typically used as a harvesting site for free flap reconstructive surgery in a human in-vivo setting.</p> <p>Methods</p> <p>Microcirculatory data of 27 healthy subjects (25 males, age 24 ± 4 years, BMI 23.3) were evaluated continuously at the anterolateral aspect of the left thigh during RIPC using combined Laser-Doppler and photospectrometry (Oxygen-to-see, Lea Medizintechnik, Germany). After baseline microcirculatory measurement, remote ischemia was induced using a tourniquet on the contralateral upper arm for three cycles of 5 min.</p> <p>Results</p> <p>After RIPC, tissue oxygen saturation and capillary blood flow increased up to 29% and 35% during the third reperfusion phase versus baseline measurement, respectively (both p = 0.001). Postcapillary venous filling pressure decreased statistically significant by 16% during second reperfusion phase (p = 0.028).</p> <p>Conclusion</p> <p>Remote intermittent ischemic preconditioning affects cutaneous tissue oxygen saturation, arterial capillary blood flow and postcapillary venous filling pressure at a remote cutaneous location of the lower extremity. To what extent remote preconditioning might ameliorate reperfusion injury in soft tissue trauma or free flap transplantation further clinical trials have to evaluate.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01235286">NCT01235286</a></p

    Changes in physical health among participants in a multidisciplinary health programme for long-term unemployed persons

    Get PDF
    Background. The relationship between poor health and unemployment is well established. Health promotion among unemployed persons may improve their health. The aims of this study were to investigate characteristics of non-participants and drop-outs in a multidisciplinary health promotion programme for long-term unemployed persons with health complaints, to evaluate changes in physical health among participants, and to investigate determinants of improvement in physical health. Methods. A longitudinal, non-controlled design was used. The programme consisted of two weekly exercise sessions and one weekly cognitive session during 12 weeks. The main outcome measures were body mass index, blood pressure, cardiorespiratory fitness, abd
    corecore