6 research outputs found

    Endotoxemia Is Associated with Altered Innate and Adaptive Immune Responses in Untreated HIV-1 Infected Individuals

    Get PDF
    BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies) and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10) with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC) from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA) were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART), 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our results suggest that microbial translocation may be associated with innate and adaptive immune dysfunction in untreated HIV infection

    Increased Escherichia coli-Induced Interleukin-23 Production by CD16 +

    No full text
    The level of microbial translocation from the intestine is increased in HIV-1 infection. Proinflammatory cytokine production by peripheral antigen-presenting cells in response to translocated microbes or microbial products may contribute to systemic immune activation, a hallmark of HIV-1 infection. We investigated the cytokine responses of peripheral blood myeloid dendritic cells (mDCs) and monocytes to in vitro stimulation with commensal enteric Escherichia coli in peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected subjects and from uninfected controls. Levels of interleukin 23 (IL-23) produced by PBMC from HIV-1-infected subjects in response to E. coli stimulation were significantly higher than those produced by PBMC from uninfected subjects. IL-23 was produced primarily by CD16(+) monocytes. This subset of monocytes was increased in frequency and expressed higher levels of Toll-like receptor 4 (TLR4) in HIV-1-infected individuals than in controls. Blocking TLR4 on total CD14(+) monocytes reduced IL-23 production in response to E. coli stimulation. Levels of soluble CD27, an indicator of systemic immune activation, were elevated in HIV-1-infected subjects and were associated with the percentage of CD16(+) monocytes and the induction of IL-23 by E. coli, providing a link between these parameters and systemic inflammation. Taken together, these results suggest that IL-23 produced by CD16(+) monocytes in response to microbial stimulation may contribute to systemic immune activation in HIV-1-infected individuals

    TLR8: The Forgotten Relative Revindicated

    Get PDF
    The endosomal Toll-like receptors (TLRs) TLR3, TLR7, TLR8 and TLR9 are important in sensing foreign nucleic acids encountered by phagocytes. Because TLR8 was initially thought to be non-functional in mice, less is known about TLR8 than the genetically and functionally related TLR7. Originally associated with the recognition of single-stranded RNA of viral origin, there is now evidence that human TLR8 is also able to sense bacterial RNA released within phagosomal vacuoles, inducing the production of both nuclear factor (NF)-κB-dependent cytokines and type I interferons (IFNs), such as IFN-β. The functions of TLR8 extend beyond the recognition of foreign pathogens and include cross-talk with other endosomal TLRs, a process that may also have a role in the generation of autoimmunity
    corecore