255 research outputs found

    High Post-Capture Survival for Sharks, Rays and Chimaeras Discarded in the Main Shark Fishery of Australia?

    Get PDF
    Most sharks, rays and chimaeras (chondrichthyans) taken in commercial fisheries are discarded (i.e. returned to the ocean either dead or alive). Quantifying the post-capture survival (PCS) of discarded species is therefore essential for the improved management and conservation of this group. For all chondrichthyans taken in the main shark fishery of Australia, we quantified the immediate PCS of individuals reaching the deck of commercial shark gillnet fishing vessels and applied a risk-based method to semi-quantitatively determine delayed and total PCS. Estimates of immediate, delayed and total PCS were consistent, being very high for the most commonly discarded species (Port Jackson shark, Australian swellshark, and spikey dogfish) and low for the most important commercial species (gummy and school sharks). Increasing gillnet soak time or water temperature significantly decreased PCS. Chondrichthyans with bottom-dwelling habits had the highest PCS whereas those with pelagic habits had the lowest PCS. The risk-based approach can be easily implemented as a standard practice of on-board observing programs, providing a convenient first-step assessment of the PCS of all species taken in commercial fisheries

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    BABAR: an R package to simplify the normalisation of common reference design microarray-based transcriptomic datasets

    Get PDF
    Background: The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems' level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log(2)- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results: The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions: BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets

    New Jersey Center for Tourette Syndrome Sharing Repository: methods and sample description

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tourette Syndrome is a neuropsychiatric disorder characterized by chronic motor and phonic tics. Affected individuals and their family members are at an increased risk for other neuropsychiatric conditions including obsessive-compulsive disorder and attention deficit hyperactivity disorder. While there is consistent evidence that genetic factors play a significant etiologic role, no replicable susceptibility alleles have thus far been identified.</p> <p>Description</p> <p>Here we discuss a sharing resource of clinical and genetic data, the New Jersey Center for Tourette Syndrome Sharing Repository, whose goal is to provide clinical data, DNA, and lymphoblastoid cell lines to qualified researchers.</p> <p>Conclusion</p> <p>Opening access to the data and patient material to the widest possible research community will hasten the identification of causal genetic factors and facilitate better understanding and treatment of this often impairing disorder.</p

    Advances in using PARP inhibitors to treat cancer

    Get PDF
    The poly (ADP-ribose) polymerase (PARP) family of enzymes plays a critical role in the maintenance of DNA integrity as part of the base excision pathway of DNA repair. PARP1 is overexpressed in a variety of cancers, and its expression has been associated with overall prognosis in cancer, especially breast cancer. A series of new therapeutic agents that are potent inhibitors of the PARP1 and PARP2 isoforms have demonstrated important clinical activity in patients with breast or ovarian cancers that are caused by mutations in either the BRCA1 or 2 genes. Results from such studies may define a new therapeutic paradigm, wherein simultaneous loss of the capacity to repair DNA damage may have antitumor activity in itself, as well as enhance the antineoplastic potential of cytotoxic chemotherapeutic agents

    Serum Response Factor Regulates Immediate Early Host Gene Expression in Toxoplasma gondii-Infected Host Cells

    Get PDF
    Toxoplasma gondii is a wide spread pathogen that can cause severe and even fatal disease in fetuses and immune-compromised hosts. As an obligate intracellular parasite, Toxoplasma must alter the environment of its host cell in order to establish its replicative niche. This is accomplished, in part, by secretion of factors into the host cell that act to modulate processes such as transcription. Previous studies demonstrated that genes encoding transcription factors such as c-jun, junB, EGR1, and EGR2 were amongst the host genes that were the most rapidly upregulated following infection. In cells stimulated with growth factors, these genes are regulated by a transcription factor named Serum Response Factor. Serum Response Factor is a ubiquitously expressed DNA binding protein that regulates growth and actin cytoskeleton genes via MAP kinase or actin cytoskeletal signaling, respectively. Here, we report that Toxoplasma infection leads to the rapid activation of Serum Response Factor. Serum Response Factor activation is a Toxoplasma-specific event since the transcription factor is not activated by the closely related protozoan parasite, Neospora caninum. We further demonstrate that Serum Response Factor activation requires a parasite-derived secreted factor that signals via host MAP kinases but independently of the host actin cytoskeleton. Together, these data define Serum Response Factor as a host cell transcription factor that regulates immediate early gene expression in Toxoplasma-infected cells
    corecore