13 research outputs found

    Low Density Lipoproteins as Circulating Fast Temperature Sensors

    Get PDF
    Background: The potential physiological significance of the nanophase transition of neutral lipids in the core of low density lipoprotein (LDL) particles is dependent on whether the rate is fast enough to integrate small (62uC) temperature changes in the blood circulation. Methodology/Principal Findings: Using sub-second, time-resolved small-angle X-ray scattering technology with synchrotron radiation, we have monitored the dynamics of structural changes within LDL, which were triggered by temperature-jumps and-drops, respectively. Our findings reveal that the melting transition is complete within less than 10 milliseconds. The freezing transition proceeds slowly with a half-time of approximately two seconds. Thus, the time period over which LDL particles reside in cooler regions of the body readily facilitates structural reorientation of the apolar core lipids. Conclusions/Significance: Low density lipoproteins, the biological nanoparticles responsible for the transport of cholesterol in blood, are shown to act as intrinsic nano-thermometers, which can follow the periodic temperature changes during blood circulation. Our results demonstrate that the lipid core in LDL changes from a liquid crystalline to an oily state within fractions of seconds. This may, through the coupling to the protein structure of LDL, have important repercussions o

    Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

    Get PDF
    Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good” cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia

    NMR and interval PLS as reliable methods for determination of cholesterol in rodent lipoprotein fractions

    No full text
    Risk of cardiovascular disease is related to cholesterol distribution in different lipoprotein fractions. Lipoproteins in rodent model studies can only reliably be measured by time- and plasma-consuming fractionation. An alternative method to measure cholesterol distribution in the lipoprotein fractions in rat plasma is presented in this paper. Plasma from two rat studies (n = 68) was used in determining the lipoprotein profile by an established ultracentrifugation method and proton nuclear magnetic resonance (NMR) spectra of replicate samples was obtained. From the ultracentrifugation reference data and the NMR spectra, an interval partial least-square (iPLS) regression model to predict the amount of cholesterol in the different lipoprotein fractions was developed. The relative errors of the prediction models were between 12 and 33% and had correlation coefficients (r) between 0.96 and 0.84. The models were tested with an independent test set giving prediction errors between 19 and 46% and r between 0.96 and 0.76. Prediction of High, Low and Very Low Density Lipoprotein (HDL, LDL and VLDL) and total cholesterol was conducted in a study where rats had been supplemented with two doses of air-dried apple-powder. No significant difference in LDL, VLDL and total cholesterol was observed between the groups. The high apple-powder (20%) group had significantly lower HDL cholesterol (11%, P = 0.0452) than the control group. It is concluded that the iPLS approach yielded excellent regression models and thus univocal established chemometric analysis of NMR spectra of rat plasma as a strong and efficient way to quantify lipoprotein fractions in rat studies. © Springer Science+Business Media, LLC 2009
    corecore