140 research outputs found

    Implementation of seven echocardiographic parameters of myocardial asynchrony to improve the long-term response rate of cardiac resynchronization therapy (CRT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization Therapy (CRT) is an effective therapy for chronic heart failure with beneficial hemodynamic effects leading to a reduction of morbidity and mortality. The responder rates, however, are low. There are various and contentious echocardiographic parameters of myocardial asynchrony. Patient selection by echocardiographic assessment of asynchrony is thought to improve responder rates.</p> <p>Methods</p> <p>In this small single-center pilot-study, seven established parameters of myocardial asynchrony were used to select patients for CRT: (1) interventricular electromechanical delay (IMD, cut-off ≥ 40 ms), (2) Septal-to-posterior wall motion delay (SPWMD, ≥ 130 ms), (3) maximal difference in time-to-peak velocities between any two of twelve LV segments (Ts-12 ≥ 104 ms), (4) standard deviation of time to peak myocardial velocities (Ts-12-SD, ≥ 34.4 ms), (5) difference between the septal and basal time-to-peak velocity (TDId, ≥ 60 ms), (6) left ventricular electromechanical delay (LVEMD, > 140 ms) and (7) delayed longitudinal contraction (DLC, > 2 segments).</p> <p>16 chronic heart failure patients (NYHA III–IV, LVEF < 0.35, QRS ≥ 120 ms) at least two out of seven parameters of myocardial asynchrony received cardiac resynchronization therapy (CRT-ICD). Follow-up echo examination was after 6 months. The control group was a historic group of CRT patients (n = 38) who had not been screened for echocardiographic signs of myocardial asynchrony prior to device implantation.</p> <p>Results</p> <p>Based on reverse remodeling (relative reduction of LVESV > 15%, relative increase of LVEF > 25%), the responder rate to CRT was 81.2% in patients selected for CRT according to our protocol as compared to 47.4% in the control group (p = 0.04). At baseline, there were on average 4.1 ± 1.6 positive parameters of asynchrony (follow-up: 3.7 [± 1.6] parameters positive, p = 0.52). Only the LVEMD decreased significantly after CRT (p = 0.027). The remaining parameters showed a non-significant trend towards reduction of myocardial asynchrony.</p> <p>Conclusion</p> <p>The implementation of different markers of asynchrony in the selection process for CRT improves the hemodynamic response rate to CRT.</p

    The variable functional effects of the pacing site in normal and scarred ventricles

    Get PDF
    The pacing site has been shown to influence functional improvement with cardiac resynchronization therapy. We evaluated the effects of the pacing site on left ventricular (LV) function in an animal model. Equilibrium radionuclide angiography was acquired in sinus rhythm (NSR) and with ventricular pacing, from three pacing sites in seven normal and eight infarcted dogs. QRS duration, electrical activation pattern, wall motion, LV ejection fraction (EF), synchrony of ventricular contraction, and mean arterial pressure (MAP), were related to the pacing site and infarct size, during each of 120 episodes. Little changed during pacing in normals. In infarcted dogs, LV wall motion, and synchrony worsened, LVEF and MAP often fell. These changes related to altered activation patterns which were influenced by the pacing site but were not related to infarct size. Hemodynamic and functional LV changes after infarction were found to vary with the pacing site and associated conduction and synchrony

    Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance and semi-automatic border detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The systolic dyssynchrony index (SDI) has been introduced as a measure of mechanical dyssynchrony using three-dimensional echocardiography to select patients who may benefit from cardiac resynchronization therapy (CRT). However, three-dimensional echocardiography may be inadequate in a number of patients with suboptimal acoustic window and no single echocardiographic measure of dyssynchrony has proven to be of value in selecting patients for CRT. Thus, the aim of this study was to determine the value of cardiovascular magnetic resonance (CMR) for the assessment of the SDI in patients with reduced LV function as well as in healthy controls using semi-automatic border tracking.</p> <p>Methods</p> <p>We investigated a total of 45 patients including 35 patients (65 ± 8 years) with reduced LV function (EF 30 ± 11%) and a wide QRS complex as well as 10 control subjects (42 ± 21 years, EF 70 ± 11%). For cine imaging a standard SSFP imaging sequence was used with a temporal resolution of 40 frames per RR-interval. Quantitative analysis was performed off-line using a software prototype for semi-automatic border detection. Global volumes, ejection fraction and the SDI were calculated in each subject. SDI was compared with standard echocardiographic parameters of dyssynchrony.</p> <p>Results</p> <p>The mean SDI differed significantly between patients (14 ± 5%) and controls (5 ± 2%, p < 0.001). An exponential correlation between the EF and the SDI was observed (r = -0.84; p < 0.001). In addition, a significant association between the SDI and the standard deviation of time to peak systolic motion of 12 LV segments (Ts-SD) determined by echocardiography was observed (r = 0.66, p = 0.002).</p> <p>Conclusion</p> <p>The results of this preliminary study suggest that CMR with semi-automatic border detection may be useful for the assessment of mechanical dyssynchrony in patients with reduced LV function.</p> <p>No trial registration due to recruitment period between October 2004 and November 2006</p

    Reproducibility of Heart Rate Variability Indices in Children with Cystic Fibrosis

    Get PDF
    Fundamental to the potential utilisation of heart rate variability (HRV) indices as a prognostic tool is the reproducibility of these measures. The purpose of the present study was therefore to investigate the reproducibility of 24-hour derived HRV indices in a clinical paediatric population. Eighteen children (10 boys; 12.4 ± 2.8 years) with mild to moderate Cystic Fibrosis (CF; FVC: 83 ± 12% predicted; FEV1: 80 ± 9% predicted) and eighteen age- and sex-matched controls (10 boys; 12.5 ± 2.7 years) wore a combined ECG and accelerometer for two consecutive days. Standard time and frequency domain indices of HRV were subsequently derived. Reproducibility was assessed by Bland-Altman plots, 95% limits of agreement and intra-class correlation coefficients (ICC). In both groups, there was no systematic difference between days, with the variables demonstrating a symmetrical, homoscedastic distribution around the zero line. The time domain parameters demonstrated a good to excellent reproducibility irrespective of the population considered (ICC: 0.56 to 0.86). In contrast, whilst the frequency domain parameters similarly showed excellent reproducibility in the healthy children (ICC: 0.70 to 0.96), the majority of the frequency domain parameters illustrated a poor to moderate reproducibility in those with CF (ICC: 0.22 to 0.43). The exceptions to this trend were the normalised LF and HF components which were associated with a good to excellent reproducibility. These findings thereby support the utilisation of time and relative frequency domain HRV indices as a prognostic tool in children with CF. Furthermore, the present results highlight the excellent reproducibility of HRV in healthy children, indicating that this may be a useful tool to assess intervention effectiveness in this population

    Impact of contractile reserve on acute response to cardiac resynchronization therapy

    Get PDF
    Background: Cardiac resynchronization therapy (CRT) provides benefit for congestive heart failure, but still 30% of patients failed to respond to such therapy. This lack of response may be due to the presence of significant amount of scar or fibrotic tissue at myocardial level. This study sought to investigate the potential impact of myocardial contractile reserve as assessed during exercise echocardiography on acute response following CRT implantation. Methods: Fifty-one consecutive patients with heart failure (LV ejection fraction 27% ± 5%, 67% ischemic cardiomyopathy) underwent exercise Doppler echocardiography before CRT implantation to assess global contractile reserve (improvement in LV ejection fraction) and local contractile reserve in the region of the LV pacing lead (assessed by radial strain using speckle tracking analysis). Responders were defined by an increase in stroke volume ≥15% after CRT. Results: Compared with nonresponders, responders (25 patients) showed a greater exercise-induced increase in LV ejection fraction, a higher degree of mitral regurgitation and a significant extent of LV dyssynchrony. The presence of contractile reserve was directly related to the acute increase in stroke volume (r = 0.48, p<0.001). Baseline myocardial deformation as well as contractile reserve in the LV pacing lead region was greater in responders during exercise than in nonresponders (p<0.0001). Conclusions: Heart failure patients referred to CRT have less chance of improving under therapy if they have no significant mitral regurgitation, no LV dyssynchrony and no contractile myocardial recruitment at exercise

    Usefulness of NT-pro BNP monitoring to identify echocardiographic responders following cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) improves left ventricular (LV) volumes, mitral regurgitation (MR) severity and symptoms of patients with heart failure (HF). However, ≥ 30% of patients have no significant clinical or echocardiographic improvement following CRT. Reverse remodeling after CRT correlates with improved clinical outcomes. We hypothesized that in NT-pro BNP monitoring is accurate to identify responders following CRT.</p> <p>Methods</p> <p>42 consecutive patients (mean age 66 ± 12 years, male 68%) with HF undergoing CRT were prospectively enrolled. Responders at follow-up were defined by echocardiography (decrease in LV end systolic volume ≥ 15%). Echocardiography and NT-pro BNP measurement were performed at baseline and repeated 3 to 6 month after CRT.</p> <p>Results</p> <p>There was no significant difference between responders (n = 29, 69%) and non-responders (n = 13, 31%) regarding baseline NT-pro BNP level. Responders had significantly higher decrease in NT-pro BNP levels during follow-up than non-responders (absolute: -1428 ± 1333 pg.ml<sup>-1 </sup>vs. -61 ± 959 pg.ml<sup>-1</sup>, p = 0.002; relative: -45 ± 28% vs. 2 ± 28%, p < 0.0001). A decrease of ≥ 15% in NT-pro BNP 3–6 months after CRT identifies echocardiographic responders with a sensitivity of 90% and a specificity of 77%.</p> <p>Conclusion</p> <p>NT-pro BNP monitoring can accurately identify echocardiographic responders after CRT.</p

    Normative references of heart rate variability and salivary alpha-amylase in a healthy young male population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to present normative reference values of heart rate variability and salivary alpha-amylase in a healthy young male population with a particular focus on their distribution and reproducibility.</p> <p>Methods</p> <p>The short-term heart rate variability of 417 young healthy Japanese men was studied. Furthermore, salivary alpha-amylase was measured in 430 men. The average age of the subjects were 21.9 years with standard deviation of 1.6 years. Interindividual variations in heart rate variability indices and salivary alpha-amylase levels were plotted as histograms. Data are presented as the mean, median, standard deviation, coefficient of variation, skewness, kurtosis, and fifth and 95th percentiles of each physiological index.</p> <p>Results</p> <p>Mean recorded values were heart period 945.85 ms, log-transformed high frequency component 9.84 ln-ms<sup>2</sup>, log-transformed low frequency component 10.42 ln-ms<sup>2</sup>, log-transformed low frequency to high frequency ratio 0.58 ln-ratio, standard deviation of beat-to-beat interval 27.17 ms and root mean square of successive difference 37.49 ms. The mean value of raw salivary alpha-amylase was 17.48 U/mL, square root salivary alpha-amylase 3.96 sqrt[U/mL] and log-transformed salivary alpha-amylase 2.65 ln[U/mL]. Log-transformed heart rate variability indices exhibited almost symmetrical distributions; however, time-domain indices of heart rate variability (standard deviation of beat-to-beat interval and root mean square of successive difference) exhibited right-skewed (positive skewness) distributions. A considerable right-skewed distribution was observed for raw salivary alpha-amylase. Logarithmic transformation improved the distribution of salivary alpha-amylase, although square root transformation was insufficient. The day-to-day reproducibility of these indices was assessed using intraclass correlation coefficients. Intraclass correlation coefficients of most heart rate variability and salivary indices were approximately 0.5 to 0.6. Intraclass correlation coefficients of raw salivary markers were approximately 0.6, which was similar to those of heart rate variability; however, log transformation of the salivary markers did not considerably improve their reproducibility. Correlations between sympathetic indicators of heart rate variability and salivary alpha-amylase were not observed.</p> <p>Conclusion</p> <p>Because the sample population examined in this study involved limited age and gender variations, the present results were independent of these factors and were indicative of pure interindividual variation.</p

    Determination of Baroreflex Sensitivity during the Modified Oxford Maneuver by Trigonometric Regressive Spectral Analysis

    Get PDF
    BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS) have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary) and under pharmacological stimulation (non-stationary) using the algorithm of trigonometric regressive spectral analysis (TRS). Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system

    Effects of body position on autonomic regulation of cardiovascular function in young, healthy adults

    Get PDF
    Background: Analysis of rhythmic patterns embedded within beat-to-beat variations in heart rate (heart rate variability) is a tool used to assess the balance of cardiac autonomic nervous activity and may be predictive for prognosis of some medical conditions, such as myocardial infarction. It has also been used to evaluate the impact of manipulative therapeutics and body position on autonomic regulation of the cardiovascular system. However, few have compared cardiac autonomic activity in supine and prone positions, postures commonly assumed by patients in manual therapy. We intend to redress this deficiency. Methods: Heart rate, heart rate variability, and beat-to-beat blood pressure were measured in young, healthy non-smokers, during prone, supine, and sitting postures and with breathing paced at 0.25 Hz. Data were recorded for 5 minutes in each posture: Day 1 - prone and supine; Day 2 - prone and sitting. Paired t-tests or Wilcoxon signed-rank tests were used to evaluate posture-related differences in blood pressure, heart rate, and heart rate variability. Results: Prone versus supine: blood pressure and heart rate were significantly higher in the prone posture (p &lt; 0.001). Prone versus sitting: blood pressure was higher and heart rate was lower in the prone posture (p &lt; 0.05) and significant differences were found in some components of heart rate variability. Conclusion: Cardiac autonomic activity was not measurably different in prone and supine postures, but heart rate and blood pressure were. Although heart rate variability parameters indicated sympathetic dominance during sitting (supporting work of others), blood pressure was higher in the prone posture. These differences should be considered when autonomic regulation of cardiovascular function is studied in different postures
    corecore