39 research outputs found

    Neither a Nitric Oxide Donor Nor Potassium Channel Blockage Inhibit RBC Mechanical Damage Induced by a Roller Pump

    Get PDF
    Red blood cells (RBC) are exposed to various levels of shear stresses when they are exposed to artificial flow environments, such as extracorporeal flow circuits and hemodialysis equipment. This mechanical trauma affects RBC and the resulting effect is determined by the magnitude of shear forces and exposure time. It has been previously demonstrated that nitric oxide (NO) donors and potassium channel blockers could prevent the sub-hemolytic damage to RBC, when they are exposed to 120 Pa shear stress in a Couette shearing system. This study aimed at testing the effectiveness of NO donor sodium nitroprussid (SNP, 10-4 M) and non-specific potassium channel blocker tetraethylammonium (TEA, 10-7 M) in preventing the mechanical damage to RBC in a simple flow system including a roller pump and a glass capillary of 0.12 cm diameter. RBC suspensions were pumped through the capillary by the roller pump at a flow rate that maintains 200 mmHg hydrostatic pressure at the entrance of the capillary. An aliquot of 10 ml of RBC suspension of 0.4 L/L hematocrit was re-circulated through the capillary for 30 minutes. Plasma hemoglobin concentrations were found to be significantly increased (~7 folds compared to control aliquot which was not pumped through the system) and neither SNP nor TEA prevented this hemolysis. Alternatively, RBC deformability assessed by laser diffraction ektacytometry was not altered after 30 min of pumping and both SNP and TEA had no effect on this parameter. The results of this study indicated that, in contrast with the findings in RBC exposed to a well-defined magnitude of shear stress in a Couette shearing system, the mechanical damage induced by a roller pump could not be prevented by NO donor or potassium channel blocker

    A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices

    Get PDF
    Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.Research in this publication was supported by the National Institutes of Health Small Business Innovation Research program under award number R44HL114246 as a subcontract to the University of Oklahoma from VADovations and NIH grant R21HL132286 to DWS and TAS. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye

    A spike in mechanotransductive adenosine triphosphate release from red blood cells in microfluidic constrictions only occurs with rare donors

    No full text
    ObjectiveWan et al (Proc Natl Acad Sci USA, 105, 2008, 16432) demonstrated that RBCs rapidly and transiently release a spike of 300% more ATP shortly downstream from a short microfluidic constriction where the cells experience a sudden increase in shear stress. More recent work by Cinar et al (Proc Natl Acad Sci USA, 112, 2015, 11783), however, yielded no evidence for a similar spike in ATP release downstream of the constriction. Our aim was to determine whether a transient spike in mechanotransduction is the typical response of RBCs to the sudden onset of increased shear.MethodsWe investigate ATP release downstream of a microfluidic constriction for 15 participants using a luciferase-based photoluminescent assay.ResultsWhile we observe mechanotransductive ATP release from blood drawn from all donors, we find evidence of a spike in ATP concentration after the microfluidic constriction for only 2 of 15 participants. No clear trends in ATP release are found with respect to the magnitude of the applied shear stress, or to the gender, age, or physical activity (Baecke) index of the donor.ConclusionsIn aggregate, all data acquired to date suggest that a spike in mechanotransductive ATP due to a suddenly applied increase in shear stress occurs in blood drawn from only 14% of the population

    Nanomolar concentration of blood-soluble drag-reducing polymer inhibits experimental metastasis of human breast cancer cells

    No full text
    Zhijie Ding,1,* Marion Joy,1,* Marina V Kameneva,1-3 Partha Roy1,3-6 1Department of Bioengineering, 2Department of Surgery, 3McGowan Institute of Regenerative Medicine, 4Department of Pathology, 5Department of Cell Biology, 6Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA, USA *These authors contributed equally to this work Abstract: Metastasis is the leading cause of cancer mortality. Extravasation of cancer cells is a critical step of metastasis. We report a novel proof-of-concept study that investigated whether non-toxic blood-soluble chemical agents capable of rheological modification of the near-vessel-wall blood flow can reduce extravasation of tumor cells and subsequent development of metastasis. Using an experimental metastasis model, we demonstrated that systemic administration of nanomolar concentrations of so-called drag-reducing polymer dramatically impeded extravasation and development of pulmonary metastasis of breast cancer cells in mice. This is the first proof-of-principle study to directly demonstrate physical/rheological, as opposed to chemical, way to prevent cancer cells from extravasation and developing metastasis and, thus, it opens the possibility of a new direction of adjuvant interventional approach in cancer. Keywords: breast cancer, metastasis, extravasation, hemodynamics, drag-reducing polymer, blood cell traffic, microvessel

    Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels

    No full text
    Despite the importance of platelets in the formation of a thrombus, their transport in complex flows has not yet been studied in detail. In this paper we simulated red blood cells and platelets to explore their transport behaviour in aneurysmal geometries. We considered two aneurysms with different aspect ratios (AR = 1.0, 2.0) in the presence of fast and slow blood flows (Re = 10, 100), and examined the distributions of the cells. Low velocities in the parent vessel resulted in a large stagnation zone inside the cavity, leaving the initial distribution almost unchanged. In fast flows, an influx of platelets into the aneurysm was observed, leading to an elevated concentration. The connection of the platelet-rich cell-free layer (CFL) with the outer regions of the recirculation zones leads to their increased platelet concentration. These platelet-enhanced recirculation zones produced a diverse distribution of cells inside the aneurysm, for the different aspect ratios. A thin red blood CFL that was occupied by platelets was observed on the top of the wide-necked aneurysm, whereas a high-haematocrit region very close to the vessel wall was present in the narrow-necked case. The simulations revealed that non-trivial distributions of red blood cells and platelets are possible inside aneurysmal geometries, giving rise to several hypotheses on the formation of a thrombus, as well as to the wall weakening and the possible rupture of an aneurysm
    corecore