9 research outputs found

    Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus

    Get PDF
    Remote photoplethysmography (rPPG) allows contactless monitoring of human cardiac activity through a video camera. In this study, we assessed the accuracy and precision for heart rate measurements of the only consumer product available on the market, namely the Facereader™ rPPG by Noldus, with respect to a gold standard electrocardiograph. Twenty-four healthy participants were asked to sit in front of a computer screen and alternate two periods of rest with two stress tests (i.e. Go/No-Go task), while their heart rate was simultaneously acquired for 20 minutes using the ECG criterion measure and the Facereader™ rPPG. Results show that the Facereader™ rPPG tends to overestimate lower heart rates and underestimate higher heart rates compared to the ECG. The Facereader™ rPPG revealed a mean bias of 9.8 bpm, the 95% limits of agreement (LoA) ranged from almost -30 up to +50 bpm. These results suggest that whilst the rPPG Facereader™ technology has potential for contactless heart rate monitoring, its predictions are inaccurate for higher heart rates, with unacceptable precision across the entire range, rendering its estimates unreliable for monitoring individuals

    A rapid high-performance semi-automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease.

    Get PDF
    OBJECTIVES: To develop a high-performance, rapid semi-automated method (Sheffield TKV Tool) for measuring total kidney volume (TKV) from magnetic resonance images (MRI) in patients with autosomal dominant polycystic kidney disease (ADPKD). METHODS: TKV was initially measured in 61 patients with ADPKD using the Sheffield TKV Tool and its performance compared to manual segmentation and other published methods (ellipsoidal, mid-slice, MIROS). It was then validated using an external dataset of MRI scans from 65 patients with ADPKD. RESULTS: Sixty-one patients (mean age 45 ± 14 years, baseline eGFR 76 ± 32 ml/min/1.73 m2) with ADPKD had a wide range of TKV (258-3680 ml) measured manually. The Sheffield TKV Tool was highly accurate (mean volume error 0.5 ± 5.3% for right kidney, - 0.7 ± 5.5% for left kidney), reproducible (intra-operator variability - 0.2 ± 1.3%; inter-operator variability 1.1 ± 2.9%) and outperformed published methods. It took less than 6 min to execute and performed consistently with high accuracy in an external MRI dataset of T2-weighted sequences with TKV acquired using three different scanners and measured using a different segmentation methodology (mean volume error was 3.45 ± 3.96%, n = 65). CONCLUSIONS: The Sheffield TKV Tool is operator friendly, requiring minimal user interaction to rapidly, accurately and reproducibly measure TKV in this, the largest reported unselected European patient cohort with ADPKD. It is more accurate than estimating equations and its accuracy is maintained at larger kidney volumes than previously reported with other semi-automated methods. It is free to use, can run as an independent executable and will accelerate the application of TKV as a prognostic biomarker for ADPKD into clinical practice. KEY POINTS: • This new semi-automated method (Sheffield TKV Tool) to measure total kidney volume (TKV) will facilitate the routine clinical assessment of patients with ADPKD. • Measuring TKV manually is time consuming and laborious. • TKV is a prognostic indicator in ADPKD and the only imaging biomarker approved by the FDA and EMA

    Enhanced molecular appreciation of psychiatric disorders through high-dimensionality data acquisition and analytics

    No full text
    corecore