4,106 research outputs found
Graphene-based spin-pumping transistor
We demonstrate with a fully quantum-mechanical approach that graphene can
function as gate-controllable transistors for pumped spin currents, i.e., a
stream of angular momentum induced by the precession of adjacent
magnetizations, which exists in the absence of net charge currents.
Furthermore, we propose as a proof of concept how these spin currents can be
modulated by an electrostatic gate. Because our proposal involves nano-sized
systems that function with very high speeds and in the absence of any applied
bias, it is potentially useful for the development of transistors capable of
combining large processing speeds, enhanced integration and extremely low power
consumption
Graphene as a non-magnetic spin-current lens
In spintronics, the ability to transport magnetic information often depends
on the existence of a spin current traveling between two different magnetic
objects acting as source and probe. A large fraction of this information never
reaches the probe and is lost because the spin current tends to travel
omni-directionally. We propose that a curved boundary between a gated and a
non-gated region within graphene acts as an ideal lens for spin currents
despite being entirely of non-magnetic nature. We show as a proof of concept
that such lenses can be utilized to redirect the spin current that travels away
from a source onto a focus region where a magnetic probe is located, saving a
considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure
Theory of Local Dynamical Magnetic Susceptibilities from the Korringa-Kohn-Rostoker Green Function Method
Within the framework of time-dependent density functional theory combined
with the Korringa-Kohn-Rostoker Green function formalism, we present a real
space methodology to investigate dynamical magnetic excitations from
first-principles. We set forth a scheme which enables one to deduce the correct
effective Coulomb potential needed to preserve the spin-invariance signature in
the dynamical susceptibilities, i.e. the Goldstone mode. We use our approach to
explore the spin dynamics of 3d adatoms and different dimers deposited on a
Cu(001) with emphasis on their decay to particle-hole pairs.Comment: 32 pages (preprint), 6 figures, one tabl
Dynamic RKKY interaction in graphene
The growing interest in carbon-based spintronics has stimulated a number of
recent theoretical studies on the RKKY interaction in graphene, based on which
the energetically favourable alignment between magnetic moments embedded in
this material can be calculated. The general consensus is that the strength of
the RKKY interaction in graphene decays as 1/D3 or faster, where D is the
separation between magnetic moments. Such an unusually fast decay for a
2-dimensional system suggests that the RKKY interaction may be too short ranged
to be experimentally observed in graphene. Here we show in a mathematically
transparent form that a far more long ranged interaction arises when the
magnetic moments are taken out of their equilibrium positions and set in
motion. We not only show that this dynamic version of the RKKY interaction in
graphene decays far more slowly but also propose how it can be observed with
currently available experimental methods.Comment: 7 pages, 2 figures, submitte
Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect
We present theoretical studies of the influence of spin orbit coupling on the
spin wave excitations of the Fe monolayer and bilayer on the W(110) surface.
The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the
absence of reflection symmetry in the plane of the film. When the magnetization
is in plane, this leads to a linear term in the spin wave dispersion relation
for propagation across the magnetization. The dispersion relation thus assumes
a form similar to that of an energy band of an electron trapped on a
semiconductor surfaces with Rashba coupling active. We also show SPEELS
response functions that illustrate the role of spin orbit coupling in such
measurements. In addition to the modifications of the dispersion relations for
spin waves, the presence of spin orbit coupling in the W substrate leads to a
substantial increase in the linewidth of the spin wave modes. The formalism we
have developed applies to a wide range of systems, and the particular system
explored in the numerical calculations provides us with an illustration of
phenomena which will be present in other ultrathin ferromagnet/substrate
combinations
SERS, XPS and DFT study of xanthine adsorbed on citrate-stabilized gold nanoparticles
We have studied the adsorption of xanthine, a nucleobase present in human tissue and fluids that is involved in important metabolic processes, on citrate-reduced gold colloidal nanoparticles by means of surface-enhanced Raman scattering (SERS), absorption, and X-ray photoelectron spectroscopy (XPS) measurements, along with density functional theory (DFT) calculations. The citrate anions stabilize the colloidal suspensions by strongly binding the gold nanoparticles. However, these anions do not impair the adsorption of xanthine on positively-charged active sites present on the metal surface. We have obtained the Fourier transform (FT)-SERS spectra of adsorbed xanthine by laser excitation in the near infrared spectral region, where interference due to fluorescence emission does not usually occur. In fact, the addition of chloride ions to the Au/xanthine colloid induces the aggregation of the gold nanoparticles, whose plasmonic band is shifted to the near infrared region where there is the exciting laser line of the FT\u2013Raman instrument. Hence, this analytical approach is potentially suitable for spectroscopic determination of xanthine directly in body fluids, avoiding fluorescence phenomena induced by visible laser irradiation
Dynamic RKKY interaction between magnetic moments in graphene nanoribbons
Graphene has been identified as a promising material with numerous
applications, particularly in spintronics. In this paper we investigate the
peculiar features of spin excitations of magnetic units deposited on graphene
nanoribbons and how they can couple through a dynamical interaction mediated by
spin currents. We examine in detail the spin lifetimes and identify a pattern
caused by vanishing density of states sites in pristine ribbons with armchair
borders. Impurities located on these sites become practically invisible to the
interaction, but can be made accessible by a gate voltage or doping. We also
demonstrate that the coupling between impurities can be turned on or off using
this characteristic, which may be used to control the transfer of information
in transistor-like devices.Comment: 10 pages, 10 figure
- …