52 research outputs found

    Clinical studies with oral lipid based formulations of poorly soluble compounds

    Get PDF
    This work is an attempt to give an overview of the clinical data available on lipid based formulations. Lipid and surfactant based formulations are recognized as a feasible approach to improve bioavailability of poorly soluble compounds. However not many clinical studies have been published so far. Several drug products intended for oral administration have been marketed utilizing lipid and surfactant based formulations. Sandimmune® and Sandimmune Neoral® (cyclosporin A, Novartis), Norvir® (ritonavir), and Fortovase® (saquinavir) have been formulated in self-emulsifying drug delivery systems (SEDDS). This review summarizes published pharmacokinetic studies of orally administered lipid based formulations of poorly aqueous soluble drugs in human subjects. Special attention has been paid to the physicochemical characteristics of the formulations, when available and the impact of these properties on the in vivo performance of the formulation. Equally important is the effect of concurrent food intake on the bioavailability of poorly soluble compounds. The effect of food on the bioavailability of compounds formulated in lipid and surfactant based formulations is also reviewed

    Direct visualizing of paracetamol immediate release tablet disintegration in vivo and in vitro

    No full text
    The purpose of the present study was to study tablet disintegration by direct visualization, in vivo and in vitro. Based on literature data, a standard conventional paracetamol (CP) tablet, Panodil (R), and a rapidly absorbed paracetamol (RP) tablet, Panodil (R) Zapp, were chosen as model systems to study tablet disintegration in the human stomach. Based on the obtained in vivo results, an in vitro disintegration method was designed to reproduce the visualized disintegration process occurring in the human stomach. For the clinical study, CP and RP tablets fastened to digital endoscopic camera capsules were administered to fasted human volunteers (n = 4). The disintegration time and process were visualized by the real time video recordings, using the endoscopic camera capsule. The average disintegration time was found to be 26 +/- 13 min and 10 +/- 7 min, for CP (n = 4) and RP (n = 4) tablets, respectively. It was possible to reproduce the in vivo disintegration data in vitro using a USP 2 dissolution apparatus with 250 mL of viscous Fasted State Simulated Gastric Fluid (vFaSSGF*), simulating the rheological profile of human fasted state gastric fluid following administration of a glass of water. The viscosity of the simulated fasted state gastric fluid was found to have a large impact on the disintegration time of the tested immediate release tablets. Therefore, it is recommended to mimic gastric fluid viscosity during in vitro tablet disintegration studies

    Characterization of prototype self-nanoemulsifying formulations of lipophilic compounds

    No full text
    This study describes the evaluation and characterization of a self-nanoemulsifying drug delivery system (SNEDDS) consisting of a nonionic surfactant (Cremophor RH40), a mixture of long chain mono-, di-, and triacylglycerides (Maisine 35-1 and Sesame oil) and ethanol. Compositions containing 10% (w/w) ethanol, 40%-60% (w/w) lipid content, and 30%-50% (w/w) Cremophor RH40 were identified as pharmaceutically relevant, robust, and self-nanoemulsifying when dispersed in aqueous media. The influence of adding three different lipophilic model drug compounds (danazol, halofantrine, and probucol) to the SNEDDS was evaluated. While danazol precipitated from the SNEDDS after dispersion in aqueous media, halofantrine and procubol remained solubilized. Halofantrine- and procubol-loaded SNEDDS were evaluated in both saline and in media simulating fasted and fed-state intestinal fluid (FaSSIF and FeSSIF) using dynamic light scattering and small-angle X-ray scattering (SAXS) techniques. Stable nanoemulsions with droplet sizes in the range of 20-50 nm were formed in all media and with and without drugs. The mean size of the droplets was neither affected significantly by being dispersed into the media simulating gastro intestinal fluid, nor by addition of the drug
    corecore