34 research outputs found
Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number
Since 1998 bluetongue virus (BTV), which causes bluetongue, a non-contagious, insect-borne infectious disease of ruminants, has expanded northwards in Europe in an unprecedented series of incursions, suggesting that there is a risk to the large and valuable British livestock industry. The basic reproduction number, R0, provides a powerful tool with which to assess the level of risk posed by a disease. In this paper, we compute R0 for BTV in a population comprising two host species, cattle and sheep. Estimates for each parameter which influences R0 were obtained from the published literature, using those applicable to the UK situation wherever possible. Moreover, explicit temperature dependence was included for those parameters for which it had been quantified. Uncertainty and sensitivity analyses based on Latin hypercube sampling and partial rank correlation coefficients identified temperature, the probability of transmission from host to vector and the vector to host ratio as being most important in determining the magnitude of R0. The importance of temperature reflects the fact that it influences many processes involved in the transmission of BTV and, in particular, the biting rate, the extrinsic incubation period and the vector mortality rate
Diagnostic applications of molecular and serological assays for bluetongue and African horse sickness
The availability of rapid, highly sensitive and specific molecular and serologic diagnostic assays, such as competitive enzyme-linked immunosorbent assay (cELISA), has expedited the diagnosis of emerging transboundary animal diseases, including bluetongue (BT) and African horse sickness (AHS), and facilitated more thorough characterisation of their epidemiology. The development of assays based on real-time, reverse-transcription polymerase chain reaction (RT-PCR) to detect and identify the numerous serotypes of BT virus (BTV) and AHS virus (AHSV) has aided in-depth studies of the epidemiology of BTV infection in California and AHSV infection in South Africa. The subsequent evaluation of pan-serotype, real-time, RT-PCR-positive samples through the use of serotype-specific RT-PCR assays allows the rapid identification of virus serotypes, reducing the need for expensive and time-consuming conventional methods, such as virus isolation and serotype-specific virus neutralisation assays. These molecular assays and cELISA platforms provide tools that have enhanced epidemiologic surveillance strategies and improved our understanding of potentially altered Culicoides midge behaviour when infected with BTV. They have also supported the detection of subclinical AHSV infection of vaccinated horses in South Africa. Moreover, in conjunction with whole genome sequence analysis, these tests have clarified that the mechanism behind recent outbreaks of AHS in the AHS-controlled area of South Africa was the result of the reversion to virulence and/or genome reassortment of live attenuated vaccine viruses. This review focuses on the use of contemporary molecular diagnostic assays in the context of recent epidemiologic studies and explores their advantages over historic virus isolation and serologic techniques.https://www.woah.org/en/what-we-do/publications/scientific-and-technical-reviewVeterinary Tropical Disease
Bloedzuigers in pluimveestallen
De ornithonyssus sylviarum (noordelijke vogelmijt) vormt in de ons omringende landen een net zo groot probleem als de bloedluis (dermanyssus gallinae). Informatie over deze parasieten moet er toe leiden dat eigenaren van pluimvee ze beter gaan herkennen
Bloedzuigers in pluimveestallen
Wageningen UR en Universiteit Amsterdam werken aan mogelijke maatregelen tegen de vogelmijt, Dermanyssus gallinae, in Nederlandse legpluimveestallen. Ook is uitbreiding van een ander vogelmijt-type gesignaleerd: de noordelijke vogelmijt, of Ornithonyssus sylviaru
Foute Familie
De overbekende bloedluis heeft een onbekend familielid: de noordelijke vogelmijt. Deze nieuwe belager is in ons omliggende landen al gezie
Bionomics of temperate and tropical Culicoides midges: knowledge gaps and consequences for transmission of Culicoides-borne viruses
Culicoides midges are abundant hematophagous flies that vector arboviruses of veterinary and medical importance. Dramatic changes in the epidemiology of Culicoides-borne arboviruses have occurred since 1998, including the emergence of exotic viruses in northern temperate regions, increases in global disease incidence, and enhanced virus diversity in tropical zones. Drivers may include changes in climate, land use, trade, and animal husbandry. New Culicoides species and new wild reservoir hosts have been implicated in transmission, highlighting the dynamic nature of pathogen-vector-host interactions. Focusing on potential vector species worldwide and key elements of vectorial capacity, we review the sensitivity of Culicoides life cycles to abiotic and biotic factors. We consider implications for designing control measures and understanding impacts of environmental change in different ecological contexts. Critical geographical, biological, and taxonomic knowledge gaps are prioritized. Recent developments in genomics and mathematical modeling may enhance ecological understanding of these complex arbovirus systems