7 research outputs found

    Effects of ecological gradients on tropical avian haemoparasites

    No full text
    Diego Santiago-Alarcón y Alfonso Marzal (eds.); Primera Edición; 910 páginasThis chapter provides a brief overview of how natural gradients (e.g., latitude, altitude, and landscape gradients) affect host–parasite interactions involving blood parasites in wildlife and how biotic and abiotic factors act as disruptors. These gradients have a direct impact on prevalence, parasitemia, and the observed relationships between parasites and hosts. In the tropical zone, altitudinal gradients imitate the behavior of the latitudinal gradient, since low temperatures are common at both higher altitudes and higher latitudes. Temperature is one of the determining factors of the diversity of vectors, hosts, and vegetation that affect parasite transmission cycles. Furthermore, within landscapes, there may be many types of elements producing gradients. For instance, increasing distance from water sources, anthropogenic degradation, and even sequential stages of succession and interspersion of vegetation communities would affect host–parasite–vector interactions. However, such effects do not always operate in the same direction because responses are context sensitive. We also discuss the importance of an integrative diagnosis, using microscopic and molecular approaches, which allow better approximations and analyses at the parasite species level, thus producing stronger conclusions. The same detail is recommended for studies on the hematophagous fauna of potential vectors. The life cycle of different parasite species has its own set of characteristics, and it corresponds to the researchers to unravel the puzzle and to avoid unwarranted generalizations.The work of SM is supported by project PGC2018-097426-B-C21 from the Spanish Ministry of Science, Innovation, and Universities. The work of LC-V was funded by the National Council for Science and Technology of Mexico (CONACYT; grants SEP-CB-2012-1-183377, and PDCPN-2015-1-1628).Peer reviewe

    Research progress on gut health of farmers teleost fish: a viewpoint concerning the intestinal mucosal barrier and the impact of its damage

    No full text

    Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application

    No full text
    International audienceFungi are considered one of the most diverse, ecologically significant, and economically important organisms on Earth. The edible and medicinal mushrooms have long been known by humans and were used by ancient civilizations not only as valuable food but also as medicines. Mushrooms are producers of high- and low-molecular-weight bioactive compounds (alkaloids, lectins, lipids, peptidoglycans, phenolics, polyketides, polysaccharides, proteins, polysaccharide-protein/peptides, ribosomal and non-ribosomal peptides, steroids, terpenoids, etc.) possessing more than 130 different therapeutic effects (analgesic, antibacterial, antifungal, anti-inflammatory, antioxidant, antiplatelet, antiviral, cytotoxic, hepatoprotective, hypocholesterolemic, hypoglycemic, hypotensive, immunomodulatory, immunosuppressive, mitogenic/regenerative, etc.). The early record of Materia Medica shows evidence of using mushrooms for treatment of different diseases. Mushrooms were widely used in the traditional medicine of many countries around the world and became great resources for modern clinical and pharmacological research. However, the medicinal and biotechnological potential of mushrooms has not been fully investigated. This review discusses recent advances in research on the pharmacological potential of mushrooms and perspectives for their clinical application

    Production and applications of activated carbons as adsorbents from olive stones

    No full text
    corecore