9 research outputs found

    Isolation of microplastics in biota-rich seawater samples and marine organisms.

    Get PDF
    notes: PMCID: PMC3970126types: Journal Article; Research Support, Non-U.S. Gov'tThis is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m(-3). The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.Natural Environment Research Council (NERC

    Microplastics Detection Using Pyrolysis-GC/MS-Based Methods

    No full text
    International audienceBy now the polymeric nature of microparticles has to be demonstrated before their classification as microplastics. Pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC/MS) has been used for years to characterize polymers. Thanks to three distinct steps, destructuring, separation, and identification, this chapter explains how this technique allows the analyst to ascertain the polymeric composition of different plastic materials and much more. Far from being used as much as vibrational spectroscopy methods for the study of microplastics, Py-GC/MS nevertheless has advantages which will be presented in this chapter, through the presentation of the contributions of this technique in terms of identification and quantification of microplastics. All of the studies presented here allow to outline some good laboratory practices relative to this technique. The last part of this chapter is dedicated to the future of microplastics analysis by Py-GC/MS, including the need of method normalization and the contribution of this technology for the research of nanoplastics and additives

    Analytical Methods for Microplastics in Environments: Current Advances and Challenges

    No full text
    Numerous studies have shown the presence of microplastics (MPs) in the environment. As an emerging global contaminant, the concentrations of MPs need to be evaluated, to assess its impacts on ecosystems and humans. This chapter reviews the development of analytical approaches from sample collection to MP characterization and quantification. This chapter contains a critical overview and a comparative assessment of sampling and sample preparation procedures for water, soil,sediment, biological, and atmosphere samples. We discuss sample preparation techniques such as flotation, filtration, digestion of organic matter, and analytical techniques such as morphological and physical classification, identification, and quantification of MPs. Furthermore, we address the advantages and disadvantages of these techniques, compare MP assay methods for different environment matrices, and discuss the challenges in the establishment of standard methods. In future research, it will be important to develop efficient assay protocol, such as basing on fully or semiautomated analysis, and to improve the accuracy of identification and quantification for MPs, especially nanoplastics
    corecore